题意:给一个n*m的矩形,每个格子有一个非负数,求一条从(1,1)到(n,m)的路径(不能经过重复的格子),使得经过的数的和最大,输出具体的方案

思路:对于row为奇数的情况,一行行扫下来即可全部走完得到最大和,对于col为奇数的情况一列列扫即可。对于行和列全部为偶数的情况,将所有格子进行黑白染色,起点和终点的颜色一样,而路径上的颜色是交替的,说明总有一个点不能走到,枚举得到不可到点上的最小值,总和减去就是答案。具体的方案构造方法如下:由于只有一个格子被挖掉不能走,考虑整行或整列的走,走完这个格子前面的所有格子,然后把后面的两行或两列走完,这两行或两列相当于一行或一列,那么整个图相当于是奇数行或奇数列的图了,往后走一定可以遍历完。

  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#pragma comment(linker, "/STACK:10240000")
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define copy(a, b) memcpy(a, b, sizeof(a)) typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull; //#ifndef ONLINE_JUDGE
void RI(vector<int>&a,int n){a.resize(n);for(int i=;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?:-;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
//#endif
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);} const double PI = acos(-1.0);
const int INF = 1e9 + ;
const double EPS = 1e-12; /* -------------------------------------------------------------------------------- */ int n, m, sum;
int a[][]; void out() {
printf("%d\n", sum);
if (n & ) {
char ch = 'R';
for (int i = ; i < n; i ++) {
for (int j = ; j < m; j ++) putchar(ch);
if (i < n - ) putchar('D');
ch = ch == 'L'? 'R' : 'L';
}
}
else {
char ch = 'D';
for (int j = ; j < m; j ++) {
for (int i = ; i < n; i ++) putchar(ch);
if (j < m - ) putchar('R');
ch = ch == 'D'? 'U' : 'D';
}
}
putchar('\n');
} void work() {
int minnum = INF, x, y;
for (int i = ; i < n; i ++) {
for (int j = ; j < m; j ++) {
bool r = i & , c = j & ;
if ((r == c)) continue;
if (umin(minnum, a[i][j])) {
x = i;
y = j;
}
}
}
printf("%d\n", sum - minnum);
if (x & ) {
char ch = 'D';
for (int j = ; j < y; j ++) {
for (int i = ; i < n; i ++) putchar(ch);
putchar('R');
ch = ch == 'D'? 'U' : 'D';
}
ch = 'R';
for (int i = ; i < x; i ++) {
putchar(ch);
putchar('D');
ch = ch == 'L'? 'R' : 'L';
}
for (int i = x + ; i < n; i ++) {
putchar('D');
putchar(ch);
ch = ch == 'L'? 'R' : 'L';
}
if (y < m - ) {
putchar('R');
ch = 'U';
for (int j = y + ; j < m; j ++) {
for (int i = ; i < n; i ++) putchar(ch);
if (j < m - ) putchar('R');
ch = ch == 'D'? 'U' : 'D';
}
}
}
else {
char ch = 'R';
for (int i = ; i < x; i ++) {
for (int j = ; j < m; j ++) putchar(ch);
putchar('D');
ch = ch == 'R'? 'L' : 'R';
}
ch = 'D';
for (int j = ; j < y; j ++) {
putchar(ch);
putchar('R');
ch = ch == 'U'? 'D' : 'U';
}
for (int j = y + ; j < m; j ++) {
putchar('R');
putchar(ch);
ch = ch == 'U'? 'D' : 'U';
}
if (x < n - ) {
putchar('D');
ch = 'L';
for (int i = x + ; i < n; i ++) {
for (int j = ; j < m; j ++) putchar(ch);
if (i < n - ) putchar('D');
ch = ch == 'R'? 'L' : 'R';
}
}
}
putchar('\n');
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
while (cin >> n >> m) {
sum = ;
for (int i = ; i < n; i ++) {
for (int j = ; j < m; j ++) {
scanf("%d", &a[i][j]);
sum += a[i][j];
}
}
if (n % || m % ) out();
else work();
}
return ;
}

[hdu5402 Travelling Salesman Problem]YY的更多相关文章

  1. hdu5402 Travelling Salesman Problem

    Problem Description Teacher Mai is in a maze with n rows and m columns. There is a non-negative numb ...

  2. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT 甲级 1150 Travelling Salesman Problem

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...

  4. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  5. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  6. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  7. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  8. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  9. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

随机推荐

  1. Nginx知多少系列之(七)负载均衡策略

    目录 1.前言 2.安装 3.配置文件详解 4.工作原理 5.Linux下托管.NET Core项目 6.Linux下.NET Core项目负载均衡 7.负载均衡策略 8.加权轮询(round rob ...

  2. 从一次“并发修改字段业务”引出多版本并发控制与InnoDB锁

    并发字段修改业务 最近在主要在做"工作流引擎"课题的预研工作,在涉及到"会签任务"(工作流业务概念,这与我们今天讨论文问题没有太多关联)的时候,遇到了一个并发修 ...

  3. Spring Cloud 系列之 Sleuth 链路追踪(二)

    本篇文章为系列文章,未读第一集的同学请猛戳这里:Spring Cloud 系列之 Sleuth 链路追踪(一) 本篇文章讲解 Sleuth 基于 Zipkin 存储链路追踪数据至 MySQL,Elas ...

  4. 8、Flink Table API & Flink Sql API

    一.概述 上图是flink的分层模型,Table API 和 SQL 处于最顶端,是 Flink 提供的高级 API 操作.Flink SQL 是 Flink 实时计算为简化计算模型,降低用户使用实时 ...

  5. thinkphp5.0 模型的应用

    <?php namespace app\admin\controller; use app\common\controller\BaseController; use think\Db;//数据 ...

  6. (四)PL/SQL运算符

    运算符是一个符号,告诉编译器执行特定的数学或逻辑操作. PL/SQL语言有丰富的内置运算符,运算符提供的以下几种类型: 1.算术运算符 2.关系运算符 3.比较运算符 4.逻辑运算符 5.字符串运算符 ...

  7. JDK 14的新特性:更加好用的NullPointerExceptions

    JDK 14的新特性:更加好用的NullPointerExceptions 让99%的java程序员都头痛的异常就是NullPointerExceptions了.NullPointerExceptio ...

  8. Ribbon 框架简介及搭建

    2019独角兽企业重金招聘Python工程师标准>>> Ribbon简介 1.  负载均衡框架,支持可插拔式的负载均衡规则 2.  支持多种协议,如HTTP.UDP等 3.  提供负 ...

  9. vue elementui table 双击单元格实现编辑,聚焦,失去焦点,显示隐藏input和span

    <el-table :data="tableData" class="tb-edit" style="width: 100%" ref ...

  10. 在独立的 Root 和 Home 硬盘驱动器上安装 Ubuntu

    安装 Linux 系统时,可以有两种不同的方式.第一种方式是在一个超快的固态硬盘上进行安装,这样可以保证迅速开机和高速访问数据.第二种方式是在一个较慢但很强大的普通硬盘驱动器上安装,这样的硬盘转速快并 ...