tf.nn.softmax(logits,axis=None,name=None,dim=None)
参数:
logits:一个非空的Tensor。必须是下列类型之一:half, float32,float64
axis:将在其上执行维度softmax。默认值为-1,表示最后一个维度
name:操作的名称(可选)
dim:axis的已弃用的别名 返回:
一个Tensor,与logits具有相同的类型和shape

sample

import tensorflow as tf

#tf.enable_eager_execution()
tf.compat.v1.enable_eager_execution() ones = tf.ones(shape=[2,3])
print(ones) temp1 = tf.nn.softmax(ones,axis=0) # 列
print(temp1) temp2 = tf.nn.softmax(ones,axis=1) # 行
print(temp2)

output

tf.Tensor(
[[1. 1. 1.]
[1. 1. 1.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[0.5 0.5 0.5]
[0.5 0.5 0.5]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[0.33333334 0.33333334 0.33333334]
[0.33333334 0.33333334 0.33333334]], shape=(2, 3), dtype=float32)

tf.nn.softmax 分类的更多相关文章

  1. 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)

    1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...

  2. tf.nn.softmax(logits,name=None)

    tf.nn.softmax( logits, axis=None, name=None, dim=None #dim在后来改掉了 ) 通过Softmax回归,将logistic的预测二分类的概率的问题 ...

  3. 对tf.nn.softmax的理解

    对tf.nn.softmax的理解 转载自律者自由 最后发布于2018-10-31 16:39:40 阅读数 25096  收藏 展开 Softmax的含义:Softmax简单的说就是把一个N*1的向 ...

  4. tf.nn.softmax & tf.nn.reduce_sum & tf.nn.softmax_cross_entropy_with_logits

    tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j ...

  5. tf.nn.softmax_cross_entropy_with_logits 分类

    tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...

  6. tf.nn.sigmoid_cross_entropy_with_logits 分类

    tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=None,,labels=None,logits=None,name=None) logits和la ...

  7. 深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)

    1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说 ...

  8. 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)

    1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...

  9. 学习笔记TF010:softmax分类

    回答多选项问题,使用softmax函数,对数几率回归在多个可能不同值上的推广.函数返回值是C个分量的概率向量,每个分量对应一个输出类别概率.分量为概率,C个分量和始终为1.每个样本必须属于某个输出类别 ...

随机推荐

  1. sql 语句系列(null 值处理)[八百章之第二章]

    查找只存在一个表中的数据 有两张表: EMP: select * from emp DEPT: 他们有共同的属性:deptno 现在要查询EMP 中的deptno不等于DEPTNO的deptno项. ...

  2. 【python 数据结构】相同某个字段值的所有数据(整理成数组包字典的形式)

    class MonitoredKeywordMore(APIView): def post(self, request): try: # 设置原生命令并且请求数据 parents_asin = str ...

  3. JavaScript 模式》读书笔记(4)— 函数1

    从这篇开始,我们会用很长的章节来讨论函数,这个JavaScript中最重要,也是最基本的技能.本章中,我们会区分函数表达式与函数声明,并且还会学习到局部作用域和变量声明提升的工作原理.以及大量对API ...

  4. Scapy编写ICMP扫描脚本

    使用Scapy模块编写ICMP扫描脚本: from scapy.all import * import optparse import threading import os def scan(ipt ...

  5. navicat和pymysql

    内容回顾 select distinct 字段1,字段2,...from 表名 where 分组之前的过滤条件 group by 分组条件 having 分组之后过滤条件 order by 排序字段1 ...

  6. MRCTF 部分WriteUp

    前言 周末做了一下北邮的CTF,这里记录一下做出来的几道题.(PS:比较菜有很多没做出来 >_< ,还是要更加努力学习啊(ง •̀o•́)ง,剩下的等大佬们出了wp后在复现一下) Web ...

  7. React入门(1)

    今天继续来学习react 首先,先写几个小demo来感受一下什么是react,以及react的语法规则,来建立对react的一个总体认识 上demo: demo01: demo01涉及的知识点有: 1 ...

  8. JavaScript 趣味题。

    第一题: const Greeters = [] for (var i = 0 ; i < 10 ; i++) { Greeters.push(function () { return cons ...

  9. 阿里云ECS(Ubuntu)单节点Kubernetes部署

    参考资料: kubernetes官网英文版 kubernetes官网中文版 前言 这篇文章是比较久之前写的了,无聊翻了下博客发现好几篇博文排版莫名其妙的变了... 于是修改并完善了下.当初刚玩k8s的 ...

  10. Codeforces 1322C - Instant Noodles(数学)

    题目链接 题意 给出一个二分图, 两边各 n 个点, 共 m 条边, n, m ≤ 5e5. 右边的点具有权值 \(c_i\), 对于一个只包含左边的点的点集 S, 定义 N(S) 为所有与这个点集相 ...