Problem Statement:

As a result of a long-standing war between the Sorcerers and the Orcs, you have been assigned as officer of one of the prison blocks. Recently the leader of the Orcs has been captured and placed inside a special cell. It works as follows: the cell is a convex polygon with at every vertex a guard tower in which a Sorcerer is placed.

Thanks to the recent agreement between the Sorcerers and Orcs, called the Beneficial Activities for Prisoners in Cells, the leader of the Orcs should be able to move around freely in his cell. You do not want your prisoner to escape, so you order the sorcerers to work together on a containment spell. If done right, this creates a magical aura around the prisoner that will prevent him from escaping.

In order for the containment spell to work, all Sorcerers need to channel a certain fraction of their maximum power into the spell such that two things hold:

  • The spell needs to be perfectly balanced: the sum of the fractions of power over all Sorcerers must equal 1.
  • The centre of the spell should coincide with the prisoner. This means that the average of the positions of Sorcerers, weighted by the fraction of power they are channeling, should be the location of the prisoner.

Given the layout of the cell and the location of the prisoner, assign a fraction of power each

Sorcerer should spend so that the containment spell works.

Input

  • The first line contains 3 ≤ n ≤ 10,the number of Sorcerers in guard towers and two

    integers -10≤ x,y ≤ 104, the coordinates of the prisoner.

  • Then follow n lines, each of which contains two integers -10≤ x,y ≤ 104 , the coordinates of a Sorcerer.

It is guaranteed that the locations are given in counter clockwise order and form a strictly convex polygon, i.e. no three points lie on a line. The prisoner is located strictly inside the polygon.

Output

  • Output n lines where the ith line contains a floating point number between 0 and 1inclusive: the fraction of power that the ith Sorcerer should use for the containment spell to work.
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e4+;
ll xa,xb,xc,ya,yb,yc,px,py;
double a,b,c,ans[maxn];
int n;
struct node //用来记录巫师所在点的坐标
{
ll x,y;
}no[];
int main()
{
cin >> n >> px >> py;   //px,py表示P点的坐标
for(int i = ; i < n ; i++)
cin >> no[i].x >> no[i].y;
xc = no[].x,yc = no[].y;
xb = no[].x,yb = no[].y;
px -= xc,py -= yc;
xb -= xc,yb -= yc;
for(int i = ; i < n ; i++)
{
xa = xb,ya = yb;
xb = no[i].x,yb = no[i].y;
xb -= xc,yb -= yc;
double f = xb*ya - xa*yb;//表示上述公式中a,b前面的系数
a = (xb*py - px*yb)/f;
b = (px*ya - py*xa)/f;
c = - a - b;
if(a >= && b >= && c >= )//要保证计算出的权值全为正,并记录在ans中
{
ans[] = c; //c对应的是x3也就是这里的xc,对应点的下标为0
ans[i-] = a; //a对应的是x1也就是这里的xa,对应点的下标为i-1
ans[i] = b; //b对应的是x2也就是这里的xb,对应点的下标为i
}
}
for(int i = ; i < n ; i++)
cout << setprecision() << ans[i] << endl;
return ;
}

BAPC K题 Keep Him Inside的更多相关文章

  1. hdu5080:几何+polya计数(鞍山区域赛K题)

    /* 鞍山区域赛的K题..当时比赛都没来得及看(反正看了也不会) 学了polya定理之后就赶紧跑来补这个题.. 由于几何比较烂写了又丑又长的代码,还debug了很久.. 比较感动的是竟然1Y了.. * ...

  2. 2017Summmer_上海金马五校 F题,G题,I题,K题,J题

    以下题目均自己搜 F题  A序列 一开始真的没懂题目什么意思,还以为是要连续的子串,结果发现时序列,简直智障,知道题意之后,好久没搞LIS,有点忘了,复习一波以后,直接双向LIS,处理处两个数组L和R ...

  3. 2020牛客多校第八场K题

    __int128(例题:2020牛客多校第八场K题) 题意: 有n道菜,第i道菜的利润为\(a_i\),且有\(b_i\)盘.你要按照下列要求给顾客上菜. 1.每位顾客至少有一道菜 2.给顾客上菜时, ...

  4. 2019牛客暑期多校训练营(第四场)k题、j题

    传送门 k题: 题意: 给你一串由数字构成的字符串,你从这个字符串中找子字符串使这个字符串是300的倍数 题解: 这道题和第三场的B题极其相似 首先可以把是三百的倍数分开,必须要是100和3的倍数 是 ...

  5. ZOJ 3879 Capture the Flag 15年浙江省赛K题

    每年省赛必有的一道模拟题,描述都是非常的长,题目都是蛮好写的... sigh... 比赛的时候没有写出这道题目 :( 题意:首先输入4个数,n,q,p,c代表有n个队伍,q个服务器,每支队伍的初始分数 ...

  6. 2016 ICPC青岛站---k题 Finding Hotels(K-D树)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5992 Problem Description There are N hotels all over ...

  7. 2013 南京邀请赛 K题 yet another end of the world

    /** 大意:给定一组x[],y[],z[] 确定有没有两个不同的x[i], x[j] 看是否存在一个ID使得 y[i]<=ID%x[i]<=z[i] y[j]<=ID%x[j]&l ...

  8. hdu 4463 有一条边必须加上 (2012杭州区域赛K题)

    耐克店 和 苹果店必须相连 Sample Input42 30 01 00 -1 1 -10 Sample Output3.41 # include <iostream> # includ ...

  9. 陕西师范第七届K题----动态规划

    ps: 自己的方法绝对是弱爆了 肯定存在更优的方法 O(n^3)复杂度 暴力求解的.. 链接:https://www.nowcoder.com/acm/contest/121/K来源:牛客网 柯怡最近 ...

随机推荐

  1. labview程序结构

    三种范式:面向过程.面向事件,面向对象:六种模式:标准状态机.消息队列.生产者/消费者(事件).生产者/消费者(数据).用户界面事件处理.主/从 事件结构相当于是一个while语句里边嵌套了一个条件结 ...

  2. spring学习笔记三:Component注解(把POJO类实例化到spring的IOC容器中)

    Component注解:把普通的POJO 类实例化到spring的IOC容器中,就是定义成<bean id="" class=""> 项目目录树: ...

  3. 吴裕雄--python编程:CGI编程

    什么是CGI CGI 目前由NCSA维护,NCSA定义CGI如下: CGI(Common Gateway Interface),通用网关接口,它是一段程序,运行在服务器上如:HTTP服务器,提供同客户 ...

  4. (六)mybatis-spring集成完整版

    mybatis-spring集成完整版 一.项目整体 mybatis接口层.mapper层 Service层 Test调用测试 二.自动生成代码-mybatis generator 主要修改: 接口. ...

  5. 解决android 无法打开 DDMS 中的data目录

    把上面操作一遍就可以了,如果还是不行你可以检查下 su 是不是输入错误了.

  6. RROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock' (2

    RROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/lib/mysql/mysql.sock' (2 ...

  7. configure: error: C compiler cannot create executables报错处理

    在测试环境安装php的imagick扩展在执行./configure生成编译文件时出现报错如下: 通过查看config.log发现有报错,在网上经验教程里发现前面的报错不管,直奔最后的报错即可,发现是 ...

  8. ubuntu采用apt-get安装pure-ftpd

    apt-get install pure-ftpdcd /etc/pure-ftpd/auth #开启虚拟账户登陆;ln -s 60auth ../conf/PureDB 60auth #查看虚拟账户 ...

  9. 苹果iPhone9、小米7…当曝光成为一门生意就没那么好玩了

    大众最乐此不疲的,当然就是以熊熊燃烧的八卦之心,去挖掘各种或为隐私,或为未知的那些事儿.为此,狗仔队.曝光人士等就受到了追捧.当然,也有对他们的各种嘲讽--而在智能手机行业,各种曝光更是乐此不疲的上演 ...

  10. Intellij IDEA创建 Web 项目

    快速构建 Web 项目 打开IDEA,新建Project,左边菜单栏选择 Maven,直接点 Next 选择GroupId和ArtifactId 选择项目名称,默认会填上工程位置.模块姓名等,直接点F ...