题目:Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data

期刊:Journal of Proteome Research

发表时间:August 2, 2019

DOI:: 10.1021/acs.jproteome.9b00268

分享人:翁海玉

内容与观点:

本研究描述了一种优化的基于深度学习(DL)的胰腺癌诊断方法并测试了该方法的分类能力。

1、实验设计

1.1数据集构建:该方法使用1008个样本的选择反应监测-质谱(SRM - MS)数据集,SRM-MS在血浆样本中检测出34种多肽(由34个蛋白衍生而来)。数据集包括300个正常人样本(NC),109个胰腺癌良性样本(PB),49个其他良性样本(OB),149个其他癌症样本(OC),和401个胰腺癌样本(PDAC)。按照0.7:0.3的比例将数据集分为训练集(691 samples; 322 PDAC, 41 OB, 88 PB, and 240 NC)和测试集(317 samples; 79 PDAC, 8 OB, 149 OC, 21 PB, and 60 NC),保持内部比例不变。其中OC只在测试集中有,以确定是否构建的模型会受到癌症异质性影响。

为了算法能够表现出鉴别胰腺癌的能力,数据集被重新构建为控制组(NC+PB+OB+OC),病例组(PDAC)。

1.2 DL模型训练和参数优化:采用十倍交叉验证的方法对训练数据集进行处理,避免了抽样偏差。每次迭代从子训练数据集中随机抽取约622个数据点(691*0.9)输入模型;其余69个值(691*0.1)作为子测试数据集,用于评估模型中的误差,同时对每个选定的数据点(分层抽样)保持对照组和病例组的比例相等。为了构造该模型,我们采用逐步逼近的方法来减少测试所有可能特征集的计算量。

利用训练数据集对模型进行微调,优化参数。然后在独立的测试数据集上对训练后的模型进行测试,并对其分类性能进行评估。利用独立的测试数据集进一步验证了模型的性能。利用测试数据集的性能来指导参数的优化。为了减少样本选择偏差和模型过拟合的可能性,除了交叉验证外,还进行了bootstrapping验证。

训练和测试数据集使用v3.10.3.6版本的H2O软件包进行处理。DL方法对10个最重要的参数纪元数(number of epochs)、节点数和隐层数(number of nodes and hidden layers)、激活函数(activation function)、rho、epsilon、L1 & L2正则化(L1 & L2 regularization)、隐藏丢失率(hidden dropout ratio)、输入丢失率(input dropout ratio)、每次迭代训练样本(train samples per iteration)、最大w2(max w2)。同时进行网格搜索来优化每个参数的值。并使用每个参数的常用值对它们逐一进行了优化,以此确定重要参数。

1.3 五种传统机器学习模型参数优化:对在蛋白质组学应用最广泛的五种机器学习模型:随机森林(RF)、支持向量机(SVM),逻辑回归(LR),K近邻(KNN)和贝叶斯(NB)建模,训练和测试数据集的处理与DL方法相同。用网格搜索,对5种方法中的参数进行调优。

1.4 DL与传统模型比较:

采用了五种传统的模型性能指标:查全率、精密度、F1评分、精密度和工作特性曲线下面积(AUROC):

Recall= 

Precision= 

F1 score=  

Accuracy= 

AUROC通过测量这个图的recall和FDR来构建AUROC曲线,其中1.0表示完全分离,0.5表示随机分类。如图:

Figure 1 完整实验过程

2、结果

2.1 DL参数优化:10个参数中 epoch, activation function, epsilon, input dropout ratio影响DL模型的分类模型(Figure 2 ),如图,选择了AUROC最大时的值为参数值。

Figure 2 DL参数优化

2.2 DL与传统机器学习模型比较:

各个指标都有明显提升,如下图:

Figure 3 六个模型的性能参数柱状图

3、结论

研究结果表明,DL是蛋白组学数据生物标志物确认的有力工具。在临床实验室中,DL有提高疾病分类任务的标准化和内部可靠性的潜力。未来的工作应该优化其在临床环境中的表现,以充分利用DL方法作为临床工具。

4、讨论

虽然DL各个性能指标都远远高于传统方法,但其仍然存在耗时长,电脑硬件要求高,需要更多的特征和样本的数据集等局限,尤其受到质疑的是,DL是一个黑盒子,难以给出内部过程。但本文向我们展示了DL的潜力。相信DL预测不同群体的高精度的能力将产生全新的数据处理选项,支持和加强未来基于蛋白组学的生物标志物研究。

Journal of Proteome Research | Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data (分享人:翁海玉)的更多相关文章

  1. Journal of Proteome Research | Improving Silkworm Genome Annotation Using a Proteogenomics Approach (分享人:张霞)

    题目:Improving Silkworm Genome Annotation Using a Proteogenomics Approach 期刊:Journal of Proteome Resea ...

  2. Integrative Analysis of MicroRNAome, Transcriptome, and Proteome during the Limb Regeneration of Cynops orientalis (文献分享一组-翁海玉)

    文献名:Integrative Analysis of MicroRNAome, Transcriptome, and Proteome during the Limb Regeneration of ...

  3. Journal of Proteome Research | 人类牙槽骨蛋白的蛋白质组学和n端分析:改进的蛋白质提取方法和LysargiNase消化策略增加了蛋白质组的覆盖率和缺失蛋白的识别 | (解读人:卜繁宇)

    文献名:Proteomic and N-Terminomic TAILS Analyses of Human Alveolar Bone Proteins: Improved Protein Extr ...

  4. Journal of Proteome Research | SAAVpedia: identification, functional annotation, and retrieval of single amino acid variants for proteogenomic interpretation | SAAV的识别、功能注释和检索 | (解读人:徐洪凯)

    文献名:SAAVpedia: identification, functional annotation, and retrieval of single amino acid variants fo ...

  5. Journal of Proteome Research | iHPDM: In Silico Human Proteome Digestion Map with Proteolytic Peptide Analysis and Graphical Visualizations(iHPDM: 人类蛋白质组理论酶解图谱的水解肽段分析和可视化展示)| (解读人:邓亚美)

    文献名:iHPDM: In Silico Human Proteome Digestion Map with Proteolytic Peptide Analysis and Graphical Vi ...

  6. Journal of Proteome Research | Down-Regulation of a Male-Specific H3K4 Demethylase, KDM5D, Impairs Cardiomyocyte Differentiation (男性特有的H3K4脱甲基酶基因(KDM5D)下调会损伤心肌细胞分化) | (解读人:徐宁)

    文献名:Down-Regulation of a Male-Specific H3K4 Demethylase, KDM5D, Impairs Cardiomyocyte Differentiatio ...

  7. Journal of Proteome Research | Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients (精神分裂症病人眶额叶皮层亚细胞结构的定量蛋白质组学研究)(解读人:王聚)

    期刊名:Journal of Proteome Research 发表时间:(2019年10月) IF:3.78 单位: 里约热内卢联邦大学 坎皮纳斯州立大学 坎皮纳斯州立大学神经生物学中心 卡拉博大 ...

  8. Journal of Proteome Research | Proteomic Profiling of Rhabdomyosarcoma-Derived Exosomes Yield Insights into Their Functional Role in Paracrine Signaling (解读人:孙国莹)

    文献名:Proteomic Profiling of Rhabdomyosarcoma-Derived Exosomes Yield Insights into Their Functional Ro ...

  9. Journal of Proteome Research | Global Proteomic Analysis of Lysine Succinylation in Zebrafish (Danio rerio) (解读人:关姣)

    文献名:Global Proteomic Analysis of Lysine Succinylation in Zebrafish (Danio rerio)(斑马鱼赖氨酸琥珀酰化的全球蛋白质组学分 ...

随机推荐

  1. Python---4字符串与编码

    字符编码 字符串比较特殊的是还有一个编码问题. 因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理.最早的计算机在设计时采用8个比特(bit)作为一个字节(byte),所以,一个 ...

  2. 从iPhone X到三星S9,为何现在山寨还能如此肆无忌惮?

    X到三星S9,为何现在山寨还能如此肆无忌惮?" title="从iPhone X到三星S9,为何现在山寨还能如此肆无忌惮?"> 曾几何时,以"土豪金&qu ...

  3. Linux IO多路复用

    监听文件描述符的状态来进行相应的读写操作,3个函数: 123 selectpollepoll 123456789 int (int nfds, fd_set *readfds, fd_set *wri ...

  4. JavaScript 設計模型 - Iterator

    Iterator Pattern是一個很重要也很簡單的Pattern:迭代器!我們可以提供一個統一入口的迭代器,Client只需要知道有哪些方法,或是有哪些Concrete Iterator,並不需要 ...

  5. L2-013 红色警报(25 分)

    L2-013 红色警报(25 分)战争中保持各个城市间的连通性非常重要.本题要求你编写一个报警程序,当失去一个城市导致国家被分裂为多个无法连通的区域时,就发出红色警报.注意:若该国本来就不完全连通,是 ...

  6. 函数节流throttle和防抖debounce

    throttle 函数节流 不论触发函数多少次,函数只在设定条件到达时调用第一次函数设定,函数节流 1234567891011 let throttle = function(fn,intervalT ...

  7. Leetcode 206题 反转链表(Reverse Linked List)Java语言求解

    题目描述: 反转一个单链表. 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL 迭代解 ...

  8. ueditor富文本编辑器——上传图片按钮卡顿,响应慢

    最近负责将公司官网从静态网站改版成动态网站,方便公司推广营销人员修改增加文案,避免官网文案维护过于依赖技术人员.在做后台管理系统时用到了富文本编辑器Ueditor,因为公司有一个阿里云文件资源服务器, ...

  9. 攻防世界Mobile6 app1 XCTF详解

    XCTF_app1 先安装看看 点击芝麻开门之后会弹出“年轻人不要耍小聪明噢” 这大概就能看懂是点击之后进行判断,那就直接去看JEB,看看判断条件是什么 V1是输入的字符串,V2获取包信息(百度的), ...

  10. python安装pip (windows64)

    1.前提条件是先安装了easy_install(easy_install安装教程http://www.cnblogs.com/IT-Crowd/articles/6528469.html) 2.在ea ...