Journal of Proteome Research | Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data (分享人:翁海玉)
题目:Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data
期刊:Journal of Proteome Research
发表时间:August 2, 2019
DOI:: 10.1021/acs.jproteome.9b00268
分享人:翁海玉
内容与观点:
本研究描述了一种优化的基于深度学习(DL)的胰腺癌诊断方法并测试了该方法的分类能力。
1、实验设计
1.1数据集构建:该方法使用1008个样本的选择反应监测-质谱(SRM - MS)数据集,SRM-MS在血浆样本中检测出34种多肽(由34个蛋白衍生而来)。数据集包括300个正常人样本(NC),109个胰腺癌良性样本(PB),49个其他良性样本(OB),149个其他癌症样本(OC),和401个胰腺癌样本(PDAC)。按照0.7:0.3的比例将数据集分为训练集(691 samples; 322 PDAC, 41 OB, 88 PB, and 240 NC)和测试集(317 samples; 79 PDAC, 8 OB, 149 OC, 21 PB, and 60 NC),保持内部比例不变。其中OC只在测试集中有,以确定是否构建的模型会受到癌症异质性影响。
为了算法能够表现出鉴别胰腺癌的能力,数据集被重新构建为控制组(NC+PB+OB+OC),病例组(PDAC)。
1.2 DL模型训练和参数优化:采用十倍交叉验证的方法对训练数据集进行处理,避免了抽样偏差。每次迭代从子训练数据集中随机抽取约622个数据点(691*0.9)输入模型;其余69个值(691*0.1)作为子测试数据集,用于评估模型中的误差,同时对每个选定的数据点(分层抽样)保持对照组和病例组的比例相等。为了构造该模型,我们采用逐步逼近的方法来减少测试所有可能特征集的计算量。
利用训练数据集对模型进行微调,优化参数。然后在独立的测试数据集上对训练后的模型进行测试,并对其分类性能进行评估。利用独立的测试数据集进一步验证了模型的性能。利用测试数据集的性能来指导参数的优化。为了减少样本选择偏差和模型过拟合的可能性,除了交叉验证外,还进行了bootstrapping验证。
训练和测试数据集使用v3.10.3.6版本的H2O软件包进行处理。DL方法对10个最重要的参数纪元数(number of epochs)、节点数和隐层数(number of nodes and hidden layers)、激活函数(activation function)、rho、epsilon、L1 & L2正则化(L1 & L2 regularization)、隐藏丢失率(hidden dropout ratio)、输入丢失率(input dropout ratio)、每次迭代训练样本(train samples per iteration)、最大w2(max w2)。同时进行网格搜索来优化每个参数的值。并使用每个参数的常用值对它们逐一进行了优化,以此确定重要参数。
1.3 五种传统机器学习模型参数优化:对在蛋白质组学应用最广泛的五种机器学习模型:随机森林(RF)、支持向量机(SVM),逻辑回归(LR),K近邻(KNN)和贝叶斯(NB)建模,训练和测试数据集的处理与DL方法相同。用网格搜索,对5种方法中的参数进行调优。
1.4 DL与传统模型比较:
采用了五种传统的模型性能指标:查全率、精密度、F1评分、精密度和工作特性曲线下面积(AUROC):
Recall= 
Precision= 
F1 score= 
Accuracy= 
AUROC通过测量这个图的recall和FDR来构建AUROC曲线,其中1.0表示完全分离,0.5表示随机分类。如图:

Figure 1 完整实验过程
2、结果
2.1 DL参数优化:10个参数中 epoch, activation function, epsilon, input dropout ratio影响DL模型的分类模型(Figure 2 ),如图,选择了AUROC最大时的值为参数值。

Figure 2 DL参数优化
2.2 DL与传统机器学习模型比较:
各个指标都有明显提升,如下图:

Figure 3 六个模型的性能参数柱状图
3、结论
研究结果表明,DL是蛋白组学数据生物标志物确认的有力工具。在临床实验室中,DL有提高疾病分类任务的标准化和内部可靠性的潜力。未来的工作应该优化其在临床环境中的表现,以充分利用DL方法作为临床工具。
4、讨论
虽然DL各个性能指标都远远高于传统方法,但其仍然存在耗时长,电脑硬件要求高,需要更多的特征和样本的数据集等局限,尤其受到质疑的是,DL是一个黑盒子,难以给出内部过程。但本文向我们展示了DL的潜力。相信DL预测不同群体的高精度的能力将产生全新的数据处理选项,支持和加强未来基于蛋白组学的生物标志物研究。
Journal of Proteome Research | Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data (分享人:翁海玉)的更多相关文章
- Journal of Proteome Research | Improving Silkworm Genome Annotation Using a Proteogenomics Approach (分享人:张霞)
题目:Improving Silkworm Genome Annotation Using a Proteogenomics Approach 期刊:Journal of Proteome Resea ...
- Integrative Analysis of MicroRNAome, Transcriptome, and Proteome during the Limb Regeneration of Cynops orientalis (文献分享一组-翁海玉)
文献名:Integrative Analysis of MicroRNAome, Transcriptome, and Proteome during the Limb Regeneration of ...
- Journal of Proteome Research | 人类牙槽骨蛋白的蛋白质组学和n端分析:改进的蛋白质提取方法和LysargiNase消化策略增加了蛋白质组的覆盖率和缺失蛋白的识别 | (解读人:卜繁宇)
文献名:Proteomic and N-Terminomic TAILS Analyses of Human Alveolar Bone Proteins: Improved Protein Extr ...
- Journal of Proteome Research | SAAVpedia: identification, functional annotation, and retrieval of single amino acid variants for proteogenomic interpretation | SAAV的识别、功能注释和检索 | (解读人:徐洪凯)
文献名:SAAVpedia: identification, functional annotation, and retrieval of single amino acid variants fo ...
- Journal of Proteome Research | iHPDM: In Silico Human Proteome Digestion Map with Proteolytic Peptide Analysis and Graphical Visualizations(iHPDM: 人类蛋白质组理论酶解图谱的水解肽段分析和可视化展示)| (解读人:邓亚美)
文献名:iHPDM: In Silico Human Proteome Digestion Map with Proteolytic Peptide Analysis and Graphical Vi ...
- Journal of Proteome Research | Down-Regulation of a Male-Specific H3K4 Demethylase, KDM5D, Impairs Cardiomyocyte Differentiation (男性特有的H3K4脱甲基酶基因(KDM5D)下调会损伤心肌细胞分化) | (解读人:徐宁)
文献名:Down-Regulation of a Male-Specific H3K4 Demethylase, KDM5D, Impairs Cardiomyocyte Differentiatio ...
- Journal of Proteome Research | Quantitative Subcellular Proteomics of the Orbitofrontal Cortex of Schizophrenia Patients (精神分裂症病人眶额叶皮层亚细胞结构的定量蛋白质组学研究)(解读人:王聚)
期刊名:Journal of Proteome Research 发表时间:(2019年10月) IF:3.78 单位: 里约热内卢联邦大学 坎皮纳斯州立大学 坎皮纳斯州立大学神经生物学中心 卡拉博大 ...
- Journal of Proteome Research | Proteomic Profiling of Rhabdomyosarcoma-Derived Exosomes Yield Insights into Their Functional Role in Paracrine Signaling (解读人:孙国莹)
文献名:Proteomic Profiling of Rhabdomyosarcoma-Derived Exosomes Yield Insights into Their Functional Ro ...
- Journal of Proteome Research | Global Proteomic Analysis of Lysine Succinylation in Zebrafish (Danio rerio) (解读人:关姣)
文献名:Global Proteomic Analysis of Lysine Succinylation in Zebrafish (Danio rerio)(斑马鱼赖氨酸琥珀酰化的全球蛋白质组学分 ...
随机推荐
- 几种 npm install XXX 的区别
在使用npm命令安装资源包时,有哪些需要注意的区别 npm install X 会把X包安装到node_modules目录中 不会修改package.json 之后运行npm install命令时,不 ...
- zctf 2016 android writeup - Jieming的博客
本文为2016年zctf中android的writeup. 首先点我下载题目.使用jeb反编译,对username和password进行部分验证后,再将username+password及一个数据库查 ...
- linux-深度学习环境配置-Centos
下载Centos 7安装镜像,制作启动优盘. Install CentOS 7 安装CentOS 7. 第一步,配置日期.语言和键盘. 第二步,选择-系统-安装位置,进入磁盘分区界面.选择-其它存储选 ...
- ITT Corporation之“中国战略”
前言:众所周知,中国已经成为全世界第二大经济体,并且坐拥14亿人口的庞大市场,蕴藏着巨大的市场机遇,海外高科技企业想法获得长足的发展重视和开拓中国市场成为重中之重,诸如特斯拉,google,苹果等,近 ...
- flask-restful 初探
flask-restful 是 Flask 的一个用于支持 RESTful 的插件. 刚开始用对我来说还是比较坑的... 目录结构 / /test /test/common /__init__.py ...
- Asp.net Core MVC(四)
上一篇说的是asp.net mvc核心UseMvc的过程,末尾想捋一下asp.net核心的路由流转过程,现在看来还是要准备下一个代码,熟悉了代码,那么整个流转过程就通了〜 不多说,今儿先看下,Rout ...
- 全网最详细的一篇Flutter 尺寸限制类容器总结
Flutter中尺寸限制类容器组件包括ConstrainedBox.UnconstrainedBox.SizedBox.AspectRatio.FractionallySizedBox.Limited ...
- 20170809-从URL输入到页面展现
从URL输入到页面展现 1.输入URL URL:统一资源定位符,是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示. URL包含以下几部分:协议.服务器名称(或IP地址).路径.参数和查询. ...
- CSS3实现一个旋转的花朵
要效果图如下: 实现原理:其实很简单,就是中间的圆圈定位在中间,其他的6个圆圈,进行不同的绝对定位,然后进行旋转!代码: <!DOCTYPE html> <html lang=&qu ...
- moment太重? 那就试试miment--一个超轻量级的js时间库
介绍 Miment 是一个轻量级的时间库(打包压缩后只有1K),没有太多的方法,Miment的设计理念就是让你以几乎为零的成本快速上手,无需一遍一遍的撸文档 由来 首先 致敬一下Moment,非常好用 ...