bzoj 4652: [Noi2016]循环之美
额,,网上一堆题解,,随便一找就找到笨蒟蒻扒的了。
这个比较神奇的是纯循环小数就是[(y,k)=1],题解有证明这个的,貌似就是k进制下的类似循环节,不会不会。。
然后这道题就变成了求这个东西:∑(x<=n)∑(y<=m) [(x,y)=1][(y,k)=1]
显然要反演一下, 出来这个东西∑(d<=n)[(d,k)==1] μ(d) (n/d) ∑ (j<=m/d) [(j,k)==1]
然后k固定,所以搞一个∑(d<=n)[(d,k)==1] μ(d)和 ∑ (j<=m/d) [(j,k)==1],这两部分有神奇的递推式,然后各种各种,,不会不会。。。
(公式怎么打啊。。。)
这位神犇写的很详细 %%%% http://www.cnblogs.com/lcf-2000/p/6250330.html
#include<bits/stdc++.h>
#define LL long long
using namespace std; const int maxn=;
const int mod=;
const int maxk=; int n,m,k,prime_k[maxk],cnt;
int prime[maxn],f[maxk];
int head[mod],next[maxn],to[maxn],tt;
int h1[][mod],n1[maxn],t1[maxn],t2;
bool vis[maxn],huzhi[maxk];
LL ans,zto[maxn],zt1[maxn],mo[maxn]; void mobius()
{
mo[]=;
for (int i=; i<maxn; i++)
{
if (!vis[i]) prime[++prime[]]=i,mo[i]=-;
for (int j=; j<=prime[] && i*prime[j]<maxn; j++)
{
vis[i*prime[j]]=;
if (i%prime[j]==)
{
mo[i*prime[j]]=;
break;
}
mo[i*prime[j]]=-mo[i];
}
}
for (int i=; i<maxn; i++) mo[i]+=mo[i-];
for (int i=; i<=k; i++) f[i]=f[i-]+(__gcd(i,k)==);
} LL F(int x){return (x/k)*f[k]+f[x%k];} LL solve_mo(int x)
{
if (x<maxn) return mo[x];
for (int i=head[x%mod];i;i=next[i]) if (to[i]==x) return zto[i];
int now=++tt; to[tt]=x; next[tt]=head[x%mod]; head[x%mod]=tt; zto[now]=;
for (int i=,nt=; nt<x; i=nt+) nt=x/(x/i),zto[now]-=(nt-i+)*solve_mo(x/i);
return zto[now];
}
LL G(int x, int y)
{
if (!x) return solve_mo(y);
if (y<=) return y;
for (int i=h1[x][y%mod];i;i=n1[i]) if (t1[i]==y) return zt1[i];
int now=++t2; t1[t2]=y; n1[t2]=h1[x][y%mod]; h1[x][y%mod]=t2;
return zt1[now]=G(x-,y)+G(x,y/prime_k[x]);
}
int main()
{
scanf("%d%d%d",&n,&m,&k); mobius();
for (int i=; prime[i]<=k; i++) if (k%prime[i]==) prime_k[++cnt]=prime[i];
for (int d=,l=min(n,m),pos; d<=l; d=pos+)
{
pos=min(n/(n/d),m/(m/d));// cout<<"!";
ans+=(G(cnt,pos)-G(cnt,d-))*(LL)(n/d)*F(m/d);
}
printf("%lld\n",ans);
return ;
}
小技巧:这里的记忆化搜索用链表代替了map(会不会map也是差不多的实现原理啊2333)
bzoj 4652: [Noi2016]循环之美的更多相关文章
- [UOJ#221][BZOJ4652][Noi2016]循环之美
[UOJ#221][BZOJ4652][Noi2016]循环之美 试题描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部 ...
- luogu 1587 [NOI2016]循环之美
LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的 ...
- bzoj4652 [Noi2016]循环之美
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在k进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知 ...
- [NOI2016]循环之美
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...
- BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】
题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10 ...
- BZOJ4652: [Noi2016]循环之美(莫比乌斯反演,杜教筛)
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...
- luogu P1587 [NOI2016]循环之美
传送门 首先要知道什么样的数才是"纯循环数".打表可以发现,这样的数当且仅当分母和\(k\)互质,这是因为,首先考虑除法过程,每次先给当前余数\(*k\),然后对分母做带余除法,那 ...
- 题解 P1587 【[NOI2016]循环之美】
知识点:莫比乌斯反演 积性函数 杜教筛 废话前言: 我是古明地恋,写这篇题解的人已经被我 请各位读者自行无视搞事的恋恋带有删除线的内容,谢谢茄子. 这道题目本身并不难,但是公式推导/代码过程中具有迷惑 ...
- BZOJ4652 NOI2016循环之美(莫比乌斯反演+杜教筛)
因为要求数值不同,不妨设gcd(x,y)=1.由提示可以知道,x/y是纯循环小数的充要条件是x·klen=x(mod y).因为x和y互质,两边同除x,得klen=1(mod y).那么当且仅当k和y ...
随机推荐
- Python实现图片识别加翻译【高薪必学】
Python使用百度AI接口实现图片识别加翻译 另外很多人在学习Python的过程中,往往因为没有好的教程或者没人指导从而导致自己容易放弃,为此我建了个Python交流.裙 :一久武其而而流一思(数字 ...
- java 并发线程锁
1.同步和异步的区别和联系 异步,执行完函数或方法后,不必阻塞性地等待返回值或消息,只需要向系统委托一个异步过程,那么当系统接收到返回 值或消息时,系统会自动触发委托的异步过程,从而完成一个完整的流 ...
- ➡️➡️➡️leetcode 需要每天打卡,养成习惯
目录 待完成的 完成的 0204 0203 以前 java 的 ! 的操作 不像 c 那样自由,!不要使用在int 变量上 c ^ 是异或操作 体会:c中,malloc 后的新建的数组,默认不是0(j ...
- Unity表面着色器
表面着色器和之前无光照着色器不同,其中没有顶点着色器和片元着色器,而增加了光照函数: 接下写了一个求两个贴图的光照效果 两个贴图做插值运算: Shader "Custom/SurfaceSh ...
- linux#自启动脚本
编写脚本: /etc/init.d/myscriptname # chkconfig: # description: 描述信息,描述信息,上面的90表示在众多开机启动脚本的优先级,10表示在众多关机启 ...
- cookie、session、localStorage、sessionStorage的区别
cookie的机制 cookie是存储在用户本地终端上的数据.有时也用cookies,指某些网站为了辨别用户身份,进行session跟踪而存储在本地终端上的数据,通常经过加密. Cookie是服务器发 ...
- html-webpack-plugin & clean-webpack-plugin
html-webpack-plugin Introduction: The HtmlWebpackPlugin simplifies creation of HTML files to serve y ...
- 算法设计与分析 - 李春葆 - 第二版 - pdf->word v1
章─概论 练习题 . 下列关于算法的说法中正确的有( ).Ⅰ.求解某一类问题的算法是唯一的 Ⅱ.算法必须在有限步操作之后停止 Ⅲ.算法的每一步操作必须是明确的,不能有歧义或含义模糊Ⅳ.算法执行后一定产 ...
- /dev设备文件命名或符号链接建立
udev是一个用户空间服务,负责监听内核设备变动事件,从/sysfs---中读取发生变动的设备属性信息,遍历 命名规则文件,进行属性规则的匹配,如果匹配,就进行执行命名自定义动作 udev 的规则和规 ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表格:将悬停的颜色应用在行或者单元格上
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...