#include<bits/stdc++.h>
using namespace std;
const int M=3e5+;
struct node{
int l,r,cnt,lazy;
node(int l1=,int r1=,int cnt1=,int lazy1=):l(l1),r(r1),cnt(cnt1),lazy(lazy1){}
}tree[M<<];
int fa[M],sz[M],deep[M],dfn[M],son[M],to[M],a[M],top[M],cnt,n;
char s[];
vector<int>g[M];
void dfs1(int u,int from){
fa[u]=from;
sz[u]=;
deep[u]=deep[from]+;
for(int i=;i<g[u].size();i++){ int v=g[u][i];
if(v!=from){
dfs1(v,u);
sz[u]+=sz[v];
if(sz[v]>sz[son[u]])
son[u]=v;
} }
}
void dfs2(int u,int t){
top[u]=t;
dfn[u]=++cnt;
to[cnt]=u;
if(!son[u])
return ;
dfs2(son[u],t);
for(int i=;i<g[u].size();i++){
int v=g[u][i];
if(v!=fa[u]&&v!=son[u])
dfs2(v,v);
}
}
void up(int root){
tree[root].cnt=tree[root<<].cnt+tree[root<<|].cnt;
if(tree[root<<].r==tree[root<<|].l)
tree[root].cnt--;
tree[root].l=tree[root<<].l;
tree[root].r=tree[root<<|].r;
}
void build(int root,int l,int r){
tree[root].lazy=;
if(l==r){
tree[root].l=tree[root].r=a[to[l]];
tree[root].cnt=;
return ;
}
int midd=(l+r)>>;
build(root<<,l,midd);
build(root<<|,midd+,r);
up(root);
}
void pushdown(int root){
tree[root<<]=tree[root<<|]=node(tree[root].l,tree[root].r,,tree[root].lazy);
tree[root].lazy=;
}
void update(int L,int R,int x,int root,int l,int r){
if(L<=l&&r<=R){
tree[root]=node(x,x,,x);
return ;
}
if(tree[root].lazy)
pushdown(root);
int midd=(l+r)>>;
if(L<=midd)
update(L,R,x,root<<,l,midd);
if(R>midd)
update(L,R,x,root<<|,midd+,r);
up(root);
}
void add(int u,int v ,int w){
int fu=top[u],fv=top[v];
while(fu!=fv){
if(deep[fu]>=deep[fv])
update(dfn[fu],dfn[u],w,,,n),u=fa[fu],fu=top[u];
else
update(dfn[fv],dfn[v],w,,,n),v=fa[fv],fv=top[v];
}
if(dfn[u]<=dfn[v])
update(dfn[u],dfn[v],w,,,n);
else
update(dfn[v],dfn[u],w,,,n);
}
node meger(node a,node b){
if(!a.cnt)
return b;
if(!b.cnt)
return a;
node ans=node(,,,);
ans.cnt=a.cnt+b.cnt;
if(a.r==b.l)
ans.cnt--;
ans.l=a.l;
ans.r=b.r;
return ans;
}
node query(int L,int R,int root,int l,int r){
if(L<=l&&r<=R){
return tree[root];
}
if(tree[root].lazy)
pushdown(root);
int midd=(l+r)>>;
node ans;
if(L<=midd)
ans=query(L,R,root<<,l,midd);
if(R>midd)
ans=meger(ans,query(L,R,root<<|,midd+,r));
up(root);
return ans;
}
int solve(int u,int v){
node l,r;
int fv=top[v],fu=top[u];
while(fv!=fu){
if(deep[fu]>=deep[fv])
l=meger(query(dfn[fu],dfn[u],,,n),l),u=fa[fu],fu=top[u];
else
r=meger(query(dfn[fv],dfn[v],,,n),r),v=fa[fv],fv=top[v];
}
if(dfn[u]<=dfn[v])
r=meger(query(dfn[u],dfn[v],,,n),r);
else
l=meger(query(dfn[v],dfn[u],,,n),l);
swap(l.l,l.r);
l=meger(l,r);
return l.cnt;
}
int main(){
int m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
g[u].push_back(v);
g[v].push_back(u);
}//cout<<"!!"<<endl;
dfs1(,);
dfs2(,); build(,,n);
while(m--){
int u,v,w;
scanf("%s",s);
if(s[]=='Q'){
scanf("%d%d",&u,&v);
printf("%d\n",solve(u,v));
}
else{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
}
return ;
}

P2486 [SDOI2011]染色 区间合并+树链剖分(加深对线段树的理解)的更多相关文章

  1. BZOJ 2243: [SDOI2011]染色 树链剖分 倍增lca 线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  2. BZOJ4012[HNOI2015]开店——树链剖分+可持久化线段树/动态点分治+vector

    题目描述 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到 人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱.这样的 想法当然非常好啦,但是她们也发现她们面临着一个 ...

  3. HDU 5029 Relief grain 树链剖分打标记 线段树区间最大值

    Relief grain Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  4. LOJ2269 [SDOI2017] 切树游戏 【FWT】【动态DP】【树链剖分】【线段树】

    题目分析: 好题.本来是一道好的非套路题,但是不凑巧的是当年有一位国家集训队员正好介绍了这个算法. 首先考虑静态的情况.这个的DP方程非常容易写出来. 接着可以注意到对于异或结果的计数可以看成一个FW ...

  5. [GDOI2016] 疯狂动物园 [树链剖分+可持久化线段树]

    题面 太长了,而且解释的不清楚,我来给个简化版的题意: 给定一棵$n$个点的数,每个点有点权,你需要实现以下$m$个操作 操作1,把$x$到$y$的路径上的所有点的权值都加上$delta$,并且更新一 ...

  6. HYSBZ 4034 【树链剖分】+【线段树 】

    <题目链接> 题目大意: 有一棵点数为 N 的树,以点 1 为根,且树点有权值.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x ...

  7. HDU 3966 Aragorn's Story(模板题)【树链剖分】+【线段树】

    <题目链接> 题目大意: 给定一颗带点权的树,进行两种操作,一是给定树上一段路径,对其上每个点的点权增加或者减少一个数,二是对某个编号点的点权进行查询. 解题分析: 树链剖分的模板题,还不 ...

  8. 焦作网络赛E-JiuYuanWantstoEat【树链剖分】【线段树】

    You ye Jiu yuan is the daughter of the Great GOD Emancipator. And when she becomes an adult, she wil ...

  9. 【树链剖分】【线段树】bzoj3626 [LNOI2014]LCA

    引用题解: http://blog.csdn.net/popoqqq/article/details/38823457 题目大意: 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深 ...

  10. 【Codeforces】【网络流】【树链剖分】【线段树】ALT (CodeForces - 786E)

    题意 现在有m个人,每一个人都特别喜欢狗.另外还有一棵n个节点的树. 现在每个人都想要从树上的某个节点走到另外一个节点,且满足要么这个人自带一条狗m,要么他经过的所有边h上都有一条狗. 2<=n ...

随机推荐

  1. MySQL数据类型使用总结,浮点使用注意事项

    1.对于精度要求较高的应用中,建议使用定点数来存储数值,以保证结果的准确性. 2.对于字符类型,要根据存储引擎进行相应的选择 3.对含有TEXT和BOLB字段的表,如果经常做删除和修改记录的操作要定时 ...

  2. go简单文件服务器

    go文件服务器 go语言实现的简单文件服务器 github

  3. CodeForces - 748F Santa Clauses and a Soccer Championship

    题意:有k对队伍,每对队伍之间将举行两次比赛,两支队伍各主办一次.住宿的地方要求在两支队伍家乡的最短路的结点上或者在两支队伍的家乡.问在选择住宿处最少的情况下,怎么组成这k对队伍? 分析: 1.因为n ...

  4. POJ 1651:Multiplication Puzzle 矩阵相乘式DP

    Multiplication Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7118   Accepted:  ...

  5. JZOJ-2019-11-8 A组

    T1 给定\(n\)个点的坐标(\(0 \leq xi,yi \leq 10000\))求选出任意三个点能组成的三角形的总面积. Input 第一行\(n\)表示点数.接下来每行两个数\(x_i\), ...

  6. 【Python】关于import QtCore报错的处理方法

    刚开始学习使用PyQT,但总碰到一些小挫折 比如 import Pyqt成功 而 from PyQt5 import QtCore, QtGui, QtWidgets却报错,找了半天终于找到资料,原因 ...

  7. ubuntu---【NVIDIA驱动 + CUDA 安装】不成功时的卸载方式

    NVIDIA驱动 与 CUDA 安装不成功时,可以卸载,检查相关问题(配置.兼容性等),重新安装.这里记录一下,卸载方式.

  8. 《Docekr入门学习篇》——Docker常用命令

    Docker常用命令 Docker镜像管理 搜索镜像:docker search 获取镜像:docker pull 查看镜像:docker images 删除镜像:docker rmi 构建镜像:do ...

  9. TiKV 在京东云对象存储元数据管理的实践

    京东云对象存储是在 2016 年作为公有云对外公开的,主要特点是可靠.安全.海量.低成本,应用于包括一些常用的业务场景,比如京东内部的京东商城视频/图片云存储,面向京东云公有云外部的开发者的服务,和面 ...

  10. Spring注解配置和xml配置优缺点比较

    Spring注解配置和xml配置优缺点比较 编辑 ​ 在昨天发布的文章<spring boot基于注解方式配置datasource>一文中凯哥简单的对xml配置和注解配置进行了比较.然后朋 ...