[leetcode] 树(Ⅱ)
All questions are simple level.
Construct String from Binary Tree
Question[606]:You need to construct a string consists of parenthesis and integers from a binary tree with the preorder traversing way. The null node needs to be represented by empty parenthesis pair "()". And you need to omit all the empty parenthesis pairs that don't affect the one-to-one mapping relationship between the string and the original binary tree.
Example
Input: Binary tree: [1,2,3,4]
1
/ \
2 3
/
4
Output: "1(2(4))(3)"
Explanation: Originallay it needs to be "1(2(4)())(3()())", but you need to omit all the unnecessary empty parenthesis pairs. And it will be "1(2(4))(3)".
Solution
Use pre-order traversal. These two methods is the same. The first one is implemented by passing arguments by reference. The second one is implemented by returned value.
class Solution
{
public:
string tree2str(TreeNode *t)
{
// string s = "";
// preorder(t, s);
// return s;
return preorder2(t);
}
void preorder(TreeNode *p, string &s)
{
if (p == nullptr)
return;
string sval = to_string(p->val);
string l, r;
preorder(p->left, l);
preorder(p->right, r);
s += sval;
bool lflag = (l != "");
bool rflag = (r != "");
if (lflag && rflag)
s += "(" + l + ")(" + r + ")";
if (!lflag && rflag)
s += "()(" + r + ")";
if (lflag && !rflag)
s += "(" + l + ")";
}
string preorder2(TreeNode *p)
{
if (p == nullptr)
return "";
bool l = (p->left != nullptr);
bool r = (p->right != nullptr);
string sval = to_string(p->val);
if (l && r)
return sval + "(" + preorder2(p->left) + ")(" + preorder2(p->right) + ")";
if (!l && r)
return sval + "()(" + preorder2(p->right) + ")";
if (l && !r)
return sval + "(" + preorder2(p->left) + ")";
return sval;
}
};
Merge Two Binary Trees
Question[617]: Given two binary trees and imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not. You need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree.
Solution: Two versions, including recursion and iteration.
Recursion version-1: create a completely new tree
class Solution
{
public:
TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2)
{
TreeNode *root = nullptr;
innerMerge(root, t1, t2);
return root;
}
void innerMerge(TreeNode *&p, TreeNode *t1, TreeNode *t2)
{
bool flag1 = (t1 != nullptr);
bool flag2 = (t2 != nullptr);
if (flag1 && flag2)
p = new TreeNode(t1->val + t2->val);
else if (!flag1 && flag2)
p = new TreeNode(t2->val);
else if (flag1 && !flag2)
p = new TreeNode(t1->val);
else
return;
innerMerge(p->left, flag1 ? t1->left : nullptr, flag2 ? t2->left : nullptr);
innerMerge(p->right, flag1 ? t1->right : nullptr, flag2 ? t2->right : nullptr);
}
};
Recursion version-2: directly modify on
t1
class Solution
{
public:
TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2)
{
return innerMerge(t1, t2);
} TreeNode *innerMerge(TreeNode *t1, TreeNode *t2)
{
if (t1 == nullptr)
return t2;
if (t2 == nullptr)
return t1;
t1->val += t2->val;
t1->left = innerMerge(t1->left, t2->left);
t1->right = innerMerge(t1->right, t2->right);
return t1;
}
};
Iteration-version implemented by pre-order traversal, modify on
t1
:TreeNode *mergeTrees(TreeNode *t1, TreeNode *t2)
{
return preorderMerge(t1, t2);
}
TreeNode *preorderMerge(TreeNode *t1, TreeNode *t2)
{
typedef pair<TreeNode *, TreeNode *> node;
if (t1 == nullptr)
return t2;
stack<node> s;
s.push(node(t1, t2));
while (!s.empty())
{
node n = s.top();
s.pop();
if (n.second == nullptr)
continue;
n.first->val += n.second->val;
if (n.first->left == nullptr)
n.first->left = n.second->left;
else
s.push(node(n.first->left, n.second->left));
if (n.first->right == nullptr)
n.first->right = n.second->right;
else
s.push(node(n.first->right, n.second->right));
}
return t1;
}
Average of Levels in Binary Tree
Question[637]: Given a non-empty binary tree, return the average value of the nodes on each level in the form of an array.
Example
Input:
3
/ \
9 20
/ \
15 7
Output: [3, 14.5, 11]
Explanation: The average value of nodes on level 0 is 3, on level 1 is 14.5, and on level 2 is 11. Hence return [3, 14.5, 11].
Solution
Level-order traversal. Use the map
sumrecord
to record the sum of each level. Usenumrecord
to record the number of nodes of each level.vector<double> averageOfLevels(TreeNode *root)
{
typedef pair<TreeNode *, int> node;
unordered_map<int, double> sumrecord;
unordered_map<int, int> numrecord;
queue<node> q;
q.push(node(root, 0));
while (!q.empty())
{
auto n = q.front();
q.pop();
sumrecord[n.second] += n.first->val;
numrecord[n.second]++;
if (n.first->left != nullptr)
q.push(node(n.first->left, n.second + 1));
if (n.first->right != nullptr)
q.push(node(n.first->right, n.second + 1));
}
vector<double> v(numrecord.size());
for (auto &x : sumrecord)
v[x.first] = x.second / numrecord[x.first];
return v;
}
Level-order traversal. Only use queue, discard the help of
node
andunordered_map
.vector<double> levelorder(TreeNode *root)
{
vector<double> v;
queue<TreeNode *> q;
q.push(root);
while (!q.empty())
{
queue<TreeNode *> nextlevel;
int64_t sum = 0;
int counter = 0;
while (!q.empty())
{
auto p = q.front();
q.pop();
sum += p->val, counter++;
if (p->left != nullptr)
nextlevel.push(p->left);
if (p->right != nullptr)
nextlevel.push(p->right);
}
q = nextlevel;
v.push_back(sum * 1.0 / counter);
}
return v;
}
Two Sum IV - Input is a BST
Question[653]: Given a Binary Search Tree and a target number, return true if there exist two elements in the BST such that their sum is equal to the given target.
Example
Input:
5
/ \
3 6
/ \ \
2 4 7
Target = 9
Output: True
Explanation: 9 = 3+6, 9 = 2+7, 9 = 4+5
Solution
First, implement a function named search(root, val)
which is used to search val
in a tree root
. Then, traversal the tree root
to judge every node p
whether there is another node q
satisfies p->val + q->val == k
.
bool search(TreeNode *p, int val, TreeNode *exceptNode)
{
if (p == nullptr)
return false;
if (p->val == val && p != exceptNode)
return true;
if (val < p->val)
return search(p->left, val, exceptNode);
return search(p->right, val, exceptNode);
}
bool levelorder(TreeNode *root, int k)
{
queue<TreeNode *> q;
q.push(root);
while (!q.empty())
{
auto p = q.front();
q.pop();
int val = k - p->val;
if (search(root, val, p))
return true;
if (p->left != nullptr)
q.push(p->left);
if (p->right != nullptr)
q.push(p->right);
}
return false;
}
Trim a Binary Search Tree
Question[669]: Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.
Example-1
Input-1:
1
/ \
0 2
L = 1
R = 2
Output-1:
1
\
2
Example-2
Input-2:
3
/ \
0 4
\
2
/
1
L = 1
R = 3
Output-2:
3
/
2
/
1
Solution
For each node of a BST, there are only three cases:
- val < L
- val > R
- L <= val <= R
When val < L, for an example:
parent parent parent
| | |
9 ==> 9 ==> right
/ \ / \
left right null right
All values in the left
sub-tree should be less than 9, hence the left
sub-tree should be discarded. And because of '9' is less than L
, hence it also should be discarded. The code to do these two operations is:
p->left = nullptr, p = trim(p->right)
The case val > R
is similar to case val < L
.
For the case L <= val <= R
, there is nothing to do on the val
node. Just continue to trim on its left sub-tree and right sub-tree.
Version-1:
TreeNode *trimBST(TreeNode *root, int L, int R)
{
return innerTrim(root, L, R);
}
TreeNode *innerTrim(TreeNode *&p, int l, int r)
{
if (p == nullptr)
return nullptr;
if (p->val < l)
{
p->left = nullptr;
return p = innerTrim(p->right, l, r);
}
else if (p->val > r)
{
p->right = nullptr;
return p = innerTrim(p->left, l, r);
}
else
{
p->left = innerTrim(p->left, l, r);
p->right = innerTrim(p->right, l, r);
return p;
}
}
Version-2:
TreeNode *trimBST(TreeNode *root, int L, int R)
{
innerTrim2(root, L, R);
return root;
}
void innerTrim2(TreeNode *&p, int l, int r)
{
if (p == nullptr)
return;
if (p->val < l)
{
p->left = nullptr, p = p->right;
innerTrim2(p, l, r);
return;
}
else if (p->val > r)
{
p->right = nullptr, p = p->left;
innerTrim2(p, l, r);
return;
}
else
{
innerTrim2(p->left, l, r);
innerTrim2(p->right, l, r);
}
}
Second Minimum Node In a Binary Tree
Question[671]: Given a non-empty special binary tree consisting of nodes with the non-negative value, where each node in this tree has exactly two or zero sub-node. If the node has two sub-nodes, then this node's value is the smaller value among its two sub-nodes. More formally, the property root.val = min(root.left.val, root.right.val)
always holds. Given such a binary tree, you need to output the second minimum value in the set made of all the nodes' value in the whole tree. If no such second minimum value exists, output -1 instead.
Example-1
Input:
2
/ \
2 5
/ \
5 7
Output: 5
Explanation: The smallest value is 2, the second smallest value is 5.
Solution
The smallest value in the tree is root->val
(at level-0) . Hence the solution is to find the smallest value in all numbers greater (at level >= 1) than root->val
.
class Solution
{
public:
int findSecondMinimumValue(TreeNode *root)
{
if (root == nullptr || root->left == nullptr)
return -1;
int minval = root->val;
int result = -1;
queue<TreeNode *> q;
auto p = root;
q.push(p);
while (!q.empty())
{
p = q.front();
q.pop();
if (p->val > minval)
result = result == -1 ? p->val : min(result, p->val);
if (p->left)
q.push(p->left);
if (p->right)
q.push(p->right);
}
return result;
}
};
Search in a Binary Search Tree
Question[700]: Given the root node of a binary search tree (BST) and a value. You need to find the node in the BST that the node's value equals the given value. Return the subtree rooted with that node. If such node doesn't exist, you should return NULL.
Example
Given the tree:
4
/ \
2 7
/ \
1 3
And the value to search: 2
2
/ \
1 3
Solution
Simple question!
class Solution
{
public:
TreeNode *searchBST(TreeNode *root, int val)
{
return iterationSearch(root, val);
}
TreeNode *recursionSearch(TreeNode *p, int val)
{
if (p == nullptr)
return nullptr;
if (p->val == val)
return p;
else if (val < p->val)
return recursionSearch(p->left, val);
else
return recursionSearch(p->right, val);
}
TreeNode *iterationSearch(TreeNode *root, int val)
{
auto p = root;
while (p != nullptr)
{
if (p->val == val)
return p;
else if (val < p->val)
p = p->left;
else
p = p->right;
}
return nullptr;
}
};
N-ary Tree
Maximum Depth of N-ary Tree
Question[559]: Given a n-ary tree, find its maximum depth. The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node. Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).
Example
Input: root = [1,null,3,2,4,null,5,6]
1
/ | \
3 2 4
/ \
5 6
Output: 3
Solution
Level order traversal.
#include "leetcode.h"
#include <queue>
class Node
{
public:
int val;
vector<Node *> children;
Node() {}
Node(int _val) { val = _val; }
Node(int _val, vector<Node *> _children)
{
val = _val;
children = _children;
}
};
class Solution
{
public:
int maxDepth(Node *root)
{
return levelorder(root);
}
int levelorder(Node *root)
{
auto p = root;
queue<Node *> q;
q.push(p);
int level = 1;
while (!q.empty())
{
queue<Node *> nextlevel;
while (!q.empty())
{
p = q.front(), q.pop();
for (auto x : p->children)
nextlevel.push(x);
}
level += (!nextlevel.empty());
q = nextlevel;
}
return level;
}
};
N-ary Tree Preorder Traversal
Question[589]: Given an n-ary tree, return the preorder traversal of its nodes' values.
Example
Input: root = [1,null,3,2,4,null,5,6]
1
/ | \
3 2 4
/ \
5 6
Output: [1,3,5,6,2,4]
Solution
First step, we should have a look at perorder traversal of a binary tree, which is similar to open the door of fridge.
stack s;
s.push(root);
while (!s.empty())
{
p = s.top(), s.pop();
print(p->val);
if (p->right) s.push(p->right);
if (p->left) s.push(p->left);
}
Second, put the elephant
[leetcode] 树(Ⅱ)的更多相关文章
- LeetCode树专题
LeetCode树专题 98. 验证二叉搜索树 二叉搜索树,每个结点的值都有一个范围 /** * Definition for a binary tree node. * struct TreeNod ...
- leetcode 树类型题
树的测试框架: // leetcodeTree.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream& ...
- leetcode: 树
1. sum-root-to-leaf-numbers Given a binary tree containing digits from0-9only, each root-to-leaf pat ...
- [leetcode] 树 -Ⅰ
均为 Simple 难度的水题. 二叉树的中序遍历 题目[94]:给定一个二叉树,返回它的中序 遍历. 解题思路:Too simple. class Solution { public: vector ...
- Leetcode 树(102, 637)
637: 二叉树的层平均值 给定一个非空二叉树,返回一个由每层节点平均值组成的数组: https://leetcode-cn.com/problems/average-of-levels-in-bin ...
- leetcode树专题894.897,919,951
满二叉树是一类二叉树,其中每个结点恰好有 0 或 2 个子结点. 返回包含 N 个结点的所有可能满二叉树的列表. 答案的每个元素都是一个可能树的根结点. 答案中每个树的每个结点都必须有 node.va ...
- leetcode 树的锯齿形状遍历
二叉树的锯齿形层次遍历 给定一个二叉树,返回其节点值的锯齿形层次遍历.(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行). 例如:给定二叉树 [3,9,20,null,n ...
- Leetcode 树 Populating Next Right Pointers in Each Node II
本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie Populating Next Right Pointers in Each Node II ...
- leetcode树相关
目录 144前序遍历 94中序遍历(98验证二叉搜索树.230二叉搜索树中第K小的元素) 145后序遍历 102/107层次遍历(104二叉树最大深度.103 105从前序与中序遍历序列构造二叉树 1 ...
随机推荐
- JZOJ 4298. 【NOIP2015模拟11.2晚】我的天
4298. [NOIP2015模拟11.2晚]我的天 (File IO): input:ohmygod.in output:ohmygod.out Time Limits: 1000 ms Memor ...
- 一起了解 .Net Foundation 项目 No.16
.Net 基金会中包含有很多优秀的项目,今天就和笔者一起了解一下其中的一些优秀作品吧. 中文介绍 中文介绍内容翻译自英文介绍,主要采用意译.如与原文存在出入,请以原文为准. Orchard CMS O ...
- Vue项目三、项目中碰到的问题详解
一.组件的划分创建 方法一: 把页面上需要复用的模块,拆分成组件.比如,页面的header.footer.面包屑.弹出框等拆分成组件.所以在src中应该有一个文件夹(components)专门放这些会 ...
- 06 yarn是什么
yarn集群中有两个角色: 主节点:Resource Manager 1台 从节点:Node Manager N台 Resource Manager一般安装在一台专门的机器上 Node Mana ...
- TARS基金会:构建微服务开源生态
导语 在20世纪60至70年代,软件开发人员通常在大型机和小型机上使用单体架构进行软件开发,没有一个应用程序能够满足大多数最终用户的需求.垂直行业使用的软件代码量更小,与其他应用程序的接口更简单,而可 ...
- Redis使用指南
原文链接 能坚持别人不能坚持的,才能拥有别人未曾拥有的.关注编程大道公众号,让我们一同坚持心中所想,一起成长!! 设置过期时间.释放资源 使用Redis做K-V存储,一定要注意过期时间的把控,任何K- ...
- MongoDB复制集概念架构浅析
一.复制集的作用 (1) 高可用 防止设备(服务器.网络)故障. 提供自动failover 功能. 技术来保证数 (2) 灾难恢复 当发生故障时,可以从其他节点恢复. (3) 功能隔离 用于分析.报表 ...
- Linux中MySQL二进制安装步骤
MySQL二进制安装步骤 安装依赖环境 [root@node3 ~]# yum -y install libaio 将mysql-5.7.26-linux-glibc2.12-x86_64.tar.g ...
- created:异步初始化数据都应该放到 created里面
created:异步初始化数据都应该放到 created里面
- Jenkins分布式构建与并行构建
Jenkins分布式构建与并行构建 jenkins的架构 Jenkins采用的是"master+agent(slave)"架构.Jenkins master负责提供界面.处理HTT ...