堆排序

1、—树与二叉树简介

树是一种数据结构 比如:目录结构

树是一种可以递归定义的数据结构

树是由n个节点组成的集合:

  • 如果n=0,那这是一棵空树;
  • 如果n>0,那存在1个节点作为树的根节点,其他节点可以分为m个集合,每个集合本身又是一棵树;

一些概念

  • 根节点、
  • 叶子节点
  • 树的深度(高度)
  • 树的度
  • 孩子节点/父节点
  • 子树

示图:

2、二叉树

二叉树:度不超过2的树(节点最多有两个叉)

示图:

3、两种特殊二叉树

  • 满二叉树
  • 完全二叉树

示图:

4、二叉树的存储方式

  • 链式存储方式
  • 顺序存储方式(列表)

示图:

父节点和左孩子节点的编号下标有什么关系?

  • 0-1 1-3 2-5 3-7 4-9
  • i ~ 2i+1

父节点和右孩子节点的编号下标有什么关系?

  • 0-2 1-4 2-6 3-8 4-10
  • i – 2i+2

5、堆

堆:

  • 大根堆:一棵完全二叉树,满足任一节点都比其孩子节点大
  • 小根堆:一棵完全二叉树,满足任一节点都比其孩子节点小

大根堆:

小根堆:

6、堆排序过程

  1. 建立堆
  2. 得到堆顶元素,
  3. 为最大元素 去掉堆顶,将堆最后一个元素放到堆顶,此时可通过一次调整重新使堆有序。
  4. 堆顶元素为第二大元素
  5. 重复步骤3,直到堆变空

7、构造堆

def sift(data,low,high):
#low 要调整范围的根节点
#high 整个data的最后一个节点
i = low
j = 2 * i + 1 #左孩子
tmp = data[i] #去出跟节点
while j <= high: #左孩子在列表里面,表明i有孩子
if j+1 <= high and data[j] < data[j+1]: #如果有右孩子并且右孩子比左孩子大
j = j + 1
if data[j] > tmp:
data[i] = data[j]
i = j
j = 2 *i +1
else:
break
data[i] = tmp def heap_sort(data):
n = len(data)
for i in range(n//2-1,-1,-1): # n//2-1 固定用法
sift(data,i,n-1) # 构造堆

8、堆排序

完整代码:

import time
import random def call_time(func):
def inner(*args,**kwargs):
t1 = time.time()
re = func(*args,**kwargs)
t2 = time.time()
print('Time cost:',func.__name__,t2-t1)
return re
return inner def sift(data,low,high):
#low 要调整范围的根节点
#high 整个data的最后一个节点
i = low
j = 2 * i + 1 #左孩子
tmp = data[i] #去出跟节点
while j <= high: #左孩子在列表里面,表明i有孩子
if j+1 <= high and data[j] < data[j+1]: #如果有右孩子并且右孩子比左孩子大
j = j + 1
if data[j] > tmp:
data[i] = data[j]
i = j
j = 2 *i +1
else:
break
data[i] = tmp @call_time
def heap_sort(data):
n = len(data)
for i in range(n//2-1,-1,-1): # n//2-1 固定用法
sift(data,i,n-1) # 构造堆 for i in range(n): # 循环n次每次出一个数
data[0],data[n-1-i] = data[n-1-i],data[0]
sift(data,0,n-1-i-1) data = list(range(10000))
random.shuffle(data) heap_sort(data)
# Time cost: heap_sort 0.08801126480102539

时间复杂度:O(nlogn)

归并排序

两段有序列表,将其合并为一个有序列表

例:

[2,5,7,8,91,3,4,6]

思路:

分解:将列表越分越小,直至分成一个元素

一个元素是有序的

合并:将两个有序列表归并,列表越来越大

代码:

import time
import random def call_time(func):
def inner(*args,**kwargs):
t1 = time.time()
re = func(*args,**kwargs)
t2 = time.time()
print('Time cost:',func.__name__,t2-t1)
return re
return inner def merge(li, low, mid, high):
i = low
j = mid + 1
ltmp = []
while i <= mid and j <= high:
if li[i] < li[j]:
ltmp.append(li[i])
i += 1
else:
ltmp.append(li[j])
j += 1
while i <= mid:
ltmp.append(li[i])
i += 1
while j <= high:
ltmp.append(li[j])
j += 1
li[low:high+1] = ltmp def _mergesort(li, low, high):
if low < high:
mid = (low + high) // 2
_mergesort(li,low, mid)
_mergesort(li, mid+1, high)
merge(li, low, mid, high) @call_time
def mergesort(li):
_mergesort(li, 0, len(li) - 1) data = list(range(10000))
random.shuffle(data) mergesort(data)
# Time cost: mergesort 0.0835103988647461

时间复杂度:O(nlogn)  

希尔排序

希尔排序是一种分组插入排序算法。

首先取一个整数d1=n/2,将元素分为d1个组,每组相邻量元素之间距离为d1,在各组内进行直接插入排序;

取第二个整数d2=d1/2,重复上述分组排序过程,直到di=1,即所有元素在同一组内进行直接插入排序。

希尔排序每趟并不使某些元素有序,而是使整体数据越来越接近有序;最后一趟排序使得所有数据有序

代码:

import time
import random def call_time(func):
def inner(*args,**kwargs):
t1 = time.time()
re = func(*args,**kwargs)
t2 = time.time()
print('Time cost:',func.__name__,t2-t1)
return re
return inner @call_time
def shell_sort(li):
gap = len(li) // 2
while gap >= 1:
for i in range(gap, len(li)):
tmp = li[i]
j = i - gap
while j >= 0 and tmp < li[j]:
li[j + gap] = li[j]
j -= gap
li[j + gap] = tmp
gap = gap // 2 data = list(range(10000))
random.shuffle(data) shell_sort(data)
# Time cost: shell_sort 0.1275160312652588

时间复杂度:O(nlogn)

快速排序、堆排序、归并排序对比:

三种排序算法的时间复杂度都是O(nlogn)

一般情况下,就运行时间而言:

  • 快速排序 < 归并排序 < 堆排序

三种排序算法的缺点:

  • 快速排序:极端情况下排序效率低
  • 归并排序:需要额外的内存开销
  • 堆排序:在快的排序算法中相对较慢

比较时间:

quick_sort(data1)    # 快排
heap_sort(data2) # 堆排
mergesort(data3) # 归排
sys_sort(data4) #系统自带 # Time cost: quick_sort 0.053006649017333984
# Time cost: heap_sort 0.08601117134094238
# Time cost: mergesort 0.08000993728637695
# Time cost: sys_sort 0.004500627517700195

视图:

第二十八章

Python开发【数据结构】:算法(二)的更多相关文章

  1. 用Python实现数据结构之二叉搜索树

    二叉搜索树 二叉搜索树是一种特殊的二叉树,它的特点是: 对于任意一个节点p,存储在p的左子树的中的所有节点中的值都小于p中的值 对于任意一个节点p,存储在p的右子树的中的所有节点中的值都大于p中的值 ...

  2. Python开发【十二章】:ORM sqlalchemy

    一.对象映射关系(ORM) orm英文全称object relational mapping,就是对象映射关系程序,简单来说我们类似python这种面向对象的程序来说一切皆对象,但是我们使用的数据库却 ...

  3. PYTHON开发--面向对象基础二

    一.成员修饰符 共有成员 私有成员, __字段名 - 无法直接访问,只能间接访问 1.     私有成员 1.1  普通方法种的私有成员 class Foo: def __init__(self, n ...

  4. 机器学习:Python实现聚类算法(二)之AP算法

    1.算法简介 AP(Affinity Propagation)通常被翻译为近邻传播算法或者亲和力传播算法,是在2007年的Science杂志上提出的一种新的聚类算法.AP算法的基本思想是将全部数据点都 ...

  5. Python开发【算法】:斐波那契数列两种时间复杂度

    斐波那契数列 概述: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, ...

  6. python开发初期及二次开发C api

    1,python2 or python 区别, https://wiki.python.org/moin/Python2orPython3 python software foundation 2,p ...

  7. Python开发——数据结构【深浅拷贝】

    浅拷贝 # 浅拷贝只copy一层 s = [3,'Lucy',4,[1,2]] s1 = s.copy() 深拷贝 # 深拷贝——克隆一分 import copy s = [3,'Lucy',4,[1 ...

  8. python 实现排序算法(二)-合并排序(递归法)

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Nov 21 22:28:09 201 ...

  9. python实现排序算法二:归并排序

    ##归并排序 ##基本思想:对于两个排好序的数组A和B,逐一比较A和B的元素,将较小值放入数组C中,当A或者B数组元素查询完后,将A或者B剩余的元素直接添加到C数组中,此时C数组即为有序数组,这就是归 ...

  10. Python开发——目录

    Python基础 Python开发——解释器安装 Python开发——基础 Python开发——变量 Python开发——[选择]语句 Python开发——[循环]语句 Python开发——数据类型[ ...

随机推荐

  1. Linux shell 学习

    ·详细介绍Linux shell脚本基础学习(一) ·详细介绍Linux shell脚本基础学习(二) ·详细介绍Linux shell脚本基础学习(三) ·详细介绍Linux shell脚本基础学习 ...

  2. 合格前端系列第六弹-从指向看JavaScript

    https://my.oschina.net/qiangdada/blog/1484001

  3. Git高级操作

    本文是在Git操作指南基础上衍生出来的高级操作,如果你对git不是很熟悉,建议你先阅读Git操作指南. 一.忽略提交特定文件 如果你不想让一些文件上传到git仓库中,可以让Git忽略特定文件或是目录, ...

  4. 安装并配置ROS环境1

    ros学习之路(原创博文,转载请标明出处-周学伟http://www.cnblogs.com/zxouxuewei/) 一.ros核心教程    1.安装并配置ROS环境: 注意: 学习这节课之前请按 ...

  5. Redis(二)-- 发布订阅、事务、安全、持久化

    一.Redis发布订阅 Redis 发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息. 打开两个窗口:session1 和 session2 在sess ...

  6. 通过Nagios监控weblogic服务

    1.前言      前段时间搭建了一套Nagios监控服务,心血来潮想自己写一个脚本,拓展Nagios插件来监控公司的weblogic服务. 环境:weblogic10.3.3.0 . CentOS6 ...

  7. mysql的if null 的用法

    <!-- 查询 分页查询 --> <select id="queryByPageList" resultMap="weixinActivityResul ...

  8. C++11-新增正则表达式

    #include <regex> #include <iostream> #include <string> #include <atlstr.h> s ...

  9. Spring学习笔记--注入Bean属性

    这里通过一个MoonlightPoet类来演示了注入Bean属性property的效果. package com.moonlit.myspring; import java.util.List; im ...

  10. PyQt4滑块QSlider、标签QLabel

    滑块部件由一个简单的操控杆构成,用户可以通过向前或向后滑动滑块来选择数据.这种选择数据的方式对一些特殊的任务来说比单纯的提供一个数据或使用spin box调整数据大小的方式要自然友好的多.而标签部件则 ...