周子轩创作品转载请注明出处  《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

gdb跟踪start_kernel()函数

start_kernel()为系统内核的入口函数,该函数主要是对环境和组件等进行初始化操作。 
课程中通过运行跟踪MenuOS来了解从start_kernel()做了哪些事情,以下为我跟踪调试的截图。后面将分析函数的执行过程。 


分析start_kernel()函数

start_kernel(): /linux-3.18.6/init/main.c

asmlinkage __visible void __init start_kernel(void)
{
// ...
trap_init();
mm_init(); /*
* Set up the scheduler prior starting any interrupts (such as the
* timer interrupt). Full topology setup happens at smp_init()
* time - but meanwhile we still have a functioning scheduler.
*/
sched_init(); // ... /* Do the rest non-__init'ed, we're now alive */
rest_init();
}

这个函数的大部分代码被省略,留下关注的4个初始化函数,其实是3个,mm_init()是内存管理初始化,暂时不分析。

trap_init()

中断向量表的初始化函数,设置了很多中断门(Interrupt Gate),其中设置了后面会关注到的system_call 
trap_init(): /linux-3.18.6/arch/x86/kernel/traps.c

void __init trap_init(void)
{
// ...
#ifdef CONFIG_X86_32
set_system_trap_gate(SYSCALL_VECTOR, &system_call);
set_bit(SYSCALL_VECTOR, used_vectors);
#endif
// ...
}

sched_init()

进程调度初始化函数,函数内做了很关键的一步初始化——对0号进程,即idle进程进行初始化

rest_init()

其他初始化函数,函数内将创建1号进程,即init进程。下面主要来分析该函数。


分析rest_init()函数

rest_init(): /linux-3.18.6/init/main.c

static noinline void __init_refok rest_init(void)
{
int pid; rcu_scheduler_starting();
/*
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/
kernel_thread(kernel_init, NULL, CLONE_FS);
numa_default_policy();
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();
complete(&kthreadd_done); /*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/
init_idle_bootup_task(current);
schedule_preempt_disabled();
/* Call into cpu_idle with preempt disabled */
cpu_startup_entry(CPUHP_ONLINE);
}

其中,创建了一个线程kernel_init,不过内核中并没有线程的概念,这里创建的是一个任务(进程)。如果把系统当成是一个大进程,那么init进程就相当于大进程中的一个线程,因为内核中的进程调度会为每一个像init进程分配时间片来执行。

kernel_thread(kernel_init, NULL, CLONE_FS);

kernel_init(): /linux-3.18.6/init/main.c

static int __ref kernel_init(void *unused)
{
int ret; kernel_init_freeable();
/* need to finish all async __init code before freeing the memory */
async_synchronize_full();
free_initmem();
mark_rodata_ro();
system_state = SYSTEM_RUNNING;
numa_default_policy(); flush_delayed_fput(); if (ramdisk_execute_command) {
ret = run_init_process(ramdisk_execute_command);
if (!ret)
return 0;
pr_err("Failed to execute %s (error %d)\n",
ramdisk_execute_command, ret);
} /*
* We try each of these until one succeeds.
*
* The Bourne shell can be used instead of init if we are
* trying to recover a really broken machine.
*/
if (execute_command) {
ret = run_init_process(execute_command);
if (!ret)
return 0;
pr_err("Failed to execute %s (error %d). Attempting defaults...\n",
execute_command, ret);
}
if (!try_to_run_init_process("/sbin/init") ||
!try_to_run_init_process("/etc/init") ||
!try_to_run_init_process("/bin/init") ||
!try_to_run_init_process("/bin/sh"))
return 0; panic("No working init found. Try passing init= option to kernel. "
"See Linux Documentation/init.txt for guidance.");
}

代码中有3个if,这三个if分别以三种不同方式来启动init,但只会有1个init会被启动

  1. 如果ramdisk_execute_command被设置,执行-initrd指定的rootfs中的init
  2. 如果execute_command有值,执行命令行传入的init(猜测)
  3. 最后再在系统文件中的/sbin/init; /etc/init; /bin/init; /bin/sh查找文件是否存在,存在即作为1号进程启动

到此1号进程的启动分析完成 
下面分析0号idle进程从哪里启动

static noinline void __init_refok rest_init(void)
{
// ...
/* Call into cpu_idle with preempt disabled */
cpu_startup_entry(CPUHP_ONLINE);
}

rest_init()函数的末尾,0号进程idle就是在这里启动的。 
cpu_startup_entry(): /linux-3.18.6/kernel/sched/idle.c

void cpu_startup_entry(enum cpuhp_state state)
{
/*
* This #ifdef needs to die, but it's too late in the cycle to
* make this generic (arm and sh have never invoked the canary
* init for the non boot cpus!). Will be fixed in 3.11
*/
#ifdef CONFIG_X86
/*
* If we're the non-boot CPU, nothing set the stack canary up
* for us. The boot CPU already has it initialized but no harm
* in doing it again. This is a good place for updating it, as
* we wont ever return from this function (so the invalid
* canaries already on the stack wont ever trigger).
*/
boot_init_stack_canary();
#endif
arch_cpu_idle_prepare();
cpu_idle_loop();
}
static void cpu_idle_loop(void)
{
while (1) {
/*
* If the arch has a polling bit, we maintain an invariant:
*
* Our polling bit is clear if we're not scheduled (i.e. if
* rq->curr != rq->idle). This means that, if rq->idle has
* the polling bit set, then setting need_resched is
* guaranteed to cause the cpu to reschedule.
*/ __current_set_polling();
tick_nohz_idle_enter(); while (!need_resched()) {
check_pgt_cache();
rmb(); if (cpu_is_offline(smp_processor_id()))
arch_cpu_idle_dead(); local_irq_disable();
arch_cpu_idle_enter(); /*
* In poll mode we reenable interrupts and spin.
*
* Also if we detected in the wakeup from idle
* path that the tick broadcast device expired
* for us, we don't want to go deep idle as we
* know that the IPI is going to arrive right
* away
*/
if (cpu_idle_force_poll || tick_check_broadcast_expired())
cpu_idle_poll();
else
cpuidle_idle_call(); arch_cpu_idle_exit();
} /*
* Since we fell out of the loop above, we know
* TIF_NEED_RESCHED must be set, propagate it into
* PREEMPT_NEED_RESCHED.
*
* This is required because for polling idle loops we will
* not have had an IPI to fold the state for us.
*/
preempt_set_need_resched();
tick_nohz_idle_exit();
__current_clr_polling(); /*
* We promise to call sched_ttwu_pending and reschedule
* if need_resched is set while polling is set. That
* means that clearing polling needs to be visible
* before doing these things.
*/
smp_mb__after_atomic(); sched_ttwu_pending();
schedule_preempt_disabled();
}
}

Linux内核分析3的更多相关文章

  1. linux内核分析作业8:理解进程调度时机跟踪分析进程调度与进程切换的过程

    1. 实验目的 选择一个系统调用(13号系统调用time除外),系统调用列表,使用库函数API和C代码中嵌入汇编代码两种方式使用同一个系统调用 分析汇编代码调用系统调用的工作过程,特别是参数的传递的方 ...

  2. Linux内核分析作业7:Linux内核如何装载和启动一个可执行程序

            1.可执行文件的格式 在 Linux 平台下主要有以下三种可执行文件格式: 1.a.out(assembler and link editor output 汇编器和链接编辑器的输出) ...

  3. linux内核分析作业6:分析Linux内核创建一个新进程的过程

    task_struct结构: struct task_struct {   volatile long state;进程状态  void *stack; 堆栈  pid_t pid; 进程标识符  u ...

  4. linux内核分析作业5:分析system_call中断处理过程

    1.增加 Menu 内核命令行 调试系统调用. 步骤:删除menu git clone        (tab) make rootfs 这就是我们将 fork 函数写入 Menu 系统内核后的效果, ...

  5. linux内核分析作业:以一简单C程序为例,分析汇编代码理解计算机如何工作

    一.实验 使用gcc –S –o main.s main.c -m32 命令编译成汇编代码,如下代码中的数字请自行修改以防与他人雷同 int g(int x) { return x + 3; } in ...

  6. linux内核分析作业:操作系统是如何工作的进行:完成一个简单的时间片轮转多道程序内核代码

    计算机如何工作 三个法宝:存储程序计算机.函数调用堆栈.中断机制. 堆栈 函数调用框架 传递参数 保存返回地址 提供局部变量空间 堆栈相关的寄存器 Esp 堆栈指针  (stack pointer) ...

  7. linux内核分析作业3:跟踪分析Linux内核的启动过程

    内核源码目录 1. arch:录下x86重点关注 2. init:目录下main.c中的start_kernel是启动内核的起点 3. ipc:进程间通信的目录 实验 使用实验楼的虚拟机打开shell ...

  8. linux内核分析作业4:使用库函数API和C代码中嵌入汇编代码两种方式使用同一个系统调用

    系统调用:库函数封装了系统调用,通过库函数和系统调用打交道 用户态:低级别执行状态,代码的掌控范围会受到限制. 内核态:高执行级别,代码可移植性特权指令,访问任意物理地址 为什么划分级别:如果全部特权 ...

  9. 《Linux内核分析》期末总结

    Linux内核设计期中总结 版权声明:本文为博主原创文章,未经博主允许不得转载. 前八周博客汇总及总结 Linux内核设计第一周——从汇编语言出发理解计算机工作原理 我们学习了汇编语言的基础知识,这一 ...

  10. 《Linux及安全》期中总结&《Linux内核分析》期终总结

    [5216 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] WEEK NINE ...

随机推荐

  1. Java泛型理解

    Java泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型.当需要使用某一种算法时,又无法具体算法的数据类型,或者想指定类型值的上限或下限,那么这时就需要Java泛型来大显身手 ...

  2. 不相交集合ADT -数据结构(C语言实现)

    读数据结构与算法分析 不相交集合 等价关系 满足三个性质 - 自反性 - 对称性 - 传递性 基本数据结构 基本思路 使用一个数组,下标表示该集合,内容表示指向的父亲 实现 类型声明 typedef ...

  3. python-__getattr__ 和 __getattribute__

    python3完全使用了新式类,废弃了旧式类,getattribute作为新式类的一个特性有非常奇妙的作用.查看一些博客和文章后,发现想要彻底理解getattr和getattribute的区别,实际上 ...

  4. Docker 快速入门教程

    本文目的是给几乎从未接触过docker,或者仅仅是听说或者通过新闻了解过Docker的同学 通过一个已有的Docker仓库构建和提交自己的Docker 镜像 这里会涉及到一些概念,但是不单独介绍 这里 ...

  5. jupyter通过notedown使用markdown

    0 Problem 最近看了下李沐老师的mxnet教程,在使用jupyter的时候打开教程发现全是markdown源文,没有展示markdown格式的文字. 1 Reason 源代码是用markdow ...

  6. ES6中Class的继承关系

    es5实现中,每个对象都有__proto__属性(也就是关系图中[[prototype]]属性),指向对应的构造函数的prototype.Class 作为构造函数的语法糖,同时有prototype属性 ...

  7. Wormholes POJ 3259(SPFA判负环)

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  8. Codeforces Beta Round #7 D. Palindrome Degree manacher算法+dp

    题目链接: http://codeforces.com/problemset/problem/7/D D. Palindrome Degree time limit per test1 secondm ...

  9. nodepad++ 格式化xml插件

    1.用插件管理器安装xmltools插件 2.使用如下菜单格式化xml: 所有插件下载地址: http://sourceforge.net/projects/npp-plugins/files/

  10. Throwable、Error、Exception、RuntimeException 区别 联系

    1.Throwable 类是 Java 语言中所有错误或异常的超类.它的两个子类是Error和Exception: 2.Error 是 Throwable 的子类,用于指示合理的应用程序不应该试图捕获 ...