摘抄自:  https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof

In mathematics, the rearrangement inequality[1] states that

{\displaystyle x_{n}y_{1}+\cdots +x_{1}y_{n}\leq x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}\leq x_{1}y_{1}+\cdots +x_{n}y_{n}}

for every choice of real numbers

{\displaystyle x_{1}\leq \cdots \leq x_{n}\quad {\text{and}}\quad y_{1}\leq \cdots \leq y_{n}}

and every permutation

{\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}}

of x1, . . ., xn. If the numbers are different, meaning that

{\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}

then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = ni + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.

Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.

Proof[edit]

The lower bound follows by applying the upper bound to

{\displaystyle -x_{n}\leq \cdots \leq -x_{1}.}

Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which

{\displaystyle x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}}

is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.

We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists a k in {j + 1, ..., n} with σ(k) = j. Now

{\displaystyle j<k\Rightarrow y_{j}\leq y_{k}\qquad {\text{and}}\qquad j<\sigma (j)\Rightarrow x_{j}\leq x_{\sigma (j)}.\quad (1)}

Therefore,

{\displaystyle 0\leq (x_{\sigma (j)}-x_{j})(y_{k}-y_{j}).\quad (2)}

Expanding this product and rearranging gives

{\displaystyle x_{\sigma (j)}y_{j}+x_{j}y_{k}\leq x_{j}y_{j}+x_{\sigma (j)}y_{k}\,,\quad (3)}

hence the permutation

{\displaystyle \tau (i):={\begin{cases}i&{\text{for }}i\in \{1,\ldots ,j\},\\\sigma (j)&{\text{for }}i=k,\\\sigma (i)&{\text{for }}i\in \{j+1,\ldots ,n\}\setminus \{k\},\end{cases}}}

which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.

If

{\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}

then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.

Generalization[edit]

A Generalization of the Rearrangement inequality states that for all real numbers {\displaystyle x_{1}\leq \cdots \leq x_{n}} and any choice of functions {\displaystyle f_{i}:[x_{1},x_{n}]\rightarrow \mathbb {R} ,i=1,2,...,n} such that

{\displaystyle f'_{1}(x)\leq f'_{2}(x)\leq ...\leq f'_{n}(x)\quad \forall x\in [x_{1},x_{n}]}

the inequality

{\displaystyle \sum _{i=1}^{n}f_{i}(x_{n-i+1})\leq \sum _{i=1}^{n}f_{i}(x_{\sigma (i)})\leq \sum _{i=1}^{n}f_{i}(x_{i})}

holds for every permutation {\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}} of {\displaystyle x_{1},\dots ,x_{n}}[2].

Rearrangement inequality的更多相关文章

  1. INEQUALITY BOOKS

    来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...

  2. cf536c——思路题

    题目 题目:Lunar New Year and Number Division 题目大意:给定一个数字序列,可以任意分组(可调整顺序),但每组至少两个,求每组内数字和的平方的最小值 思路 首先,易证 ...

  3. hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...

  4. HDU 5933 ArcSoft's Office Rearrangement 【模拟】(2016年中国大学生程序设计竞赛(杭州))

    ArcSoft's Office Rearrangement Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. HDU 4611Balls Rearrangement(思维)

    Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  6. Balls Rearrangement(HDU)

    Problem Description Bob has N balls and A boxes. He numbers the balls from 0 to N-1, and numbers the ...

  7. hdu4611 Balls Rearrangement

    Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) ...

  8. 2013 多校联合 2 A Balls Rearrangement (hdu 4611)

    Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  9. MM bound 与 Jensen's inequality

    MM bound 与 Jensen's inequality 简森不等式 在使用最大似然估计方法求解模型最优解的时候,如果使用梯度下降(GD or SGD)或者梯度上升(GA or SGA),可能收敛 ...

随机推荐

  1. C++操作符优先级带来的错误

    在刷LeetCode题目:190. 颠倒二进制位:颠倒给定的 32 位无符号整数的二进制位时,可以利用左移和右移操作符来实现数字翻转: 错误解法: class Solution { public: u ...

  2. 【xml_Class、xmlElementNode_Class 类】使用说明

    xml_Class.xmlElementNode_Class这两个类是针对XML相关操作的类. 1.xml_Class类是针对XML文档操作的类 目录: 类型 原型 参数 返回 说明 Sub Sub ...

  3. url乱码问题

    //url乱码,有时候要解码2次才能成功 String url=URLDecoder.decode(URLDecoder.decode(returnUrl, "UTF-8"),&q ...

  4. Pycharm 2018.2.1-2018.1

    请支持正版,谢谢! 下载激活包 激活包地址 解压后会得到两个包: JetbrainsCrack-2.10-release-enc.jar JetbrainsCrack-3.1-release-enc. ...

  5. Python基础灬dict&set

    字典dict 字典使用键-值(key-value)存储,具有极快的查找速度. dict基本操作 取值 a_dict = {'name': 'jack', 'age': 18} print(a_dict ...

  6. Alpha阶段事后诸葛亮会议记录

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2324 组名:可以低头,但没必要 组长:付佳 组员:张俊余  李文涛  孙 ...

  7. C# string 常用方法

    string.ToString().Contains() String str="abcd" str.ToString().Contains("a"); //t ...

  8. php addslashes和stripslashes函数

    addslashes — 使用反斜线引用字符串 stripslashes — 反引用一个引用字符串   Example #1 一个 addslashes() 例子 <?php$str = &qu ...

  9. Java package

    Java中的一个包就是一个类库单元,包内包含有一组类,它们在单一的名称空间之下被组织在了一起.这个名称空间就是包名.可以使用import关键字来导入一个包.例如使用import java.util.* ...

  10. PAT 甲级 1043 Is It a Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...