Rearrangement inequality
摘抄自: https://en.wikipedia.org/wiki/Rearrangement_inequality#Proof
In mathematics, the rearrangement inequality[1] states that
- {\displaystyle x_{n}y_{1}+\cdots +x_{1}y_{n}\leq x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}\leq x_{1}y_{1}+\cdots +x_{n}y_{n}}
for every choice of real numbers
- {\displaystyle x_{1}\leq \cdots \leq x_{n}\quad {\text{and}}\quad y_{1}\leq \cdots \leq y_{n}}
and every permutation
- {\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}}
of x1, . . ., xn. If the numbers are different, meaning that
- {\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}
then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = n − i + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.
Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.
Proof[edit]
The lower bound follows by applying the upper bound to
- {\displaystyle -x_{n}\leq \cdots \leq -x_{1}.}
Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which
- {\displaystyle x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}}
is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.
We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists a k in {j + 1, ..., n} with σ(k) = j. Now
- {\displaystyle j<k\Rightarrow y_{j}\leq y_{k}\qquad {\text{and}}\qquad j<\sigma (j)\Rightarrow x_{j}\leq x_{\sigma (j)}.\quad (1)}
Therefore,
- {\displaystyle 0\leq (x_{\sigma (j)}-x_{j})(y_{k}-y_{j}).\quad (2)}
Expanding this product and rearranging gives
- {\displaystyle x_{\sigma (j)}y_{j}+x_{j}y_{k}\leq x_{j}y_{j}+x_{\sigma (j)}y_{k}\,,\quad (3)}
hence the permutation
- {\displaystyle \tau (i):={\begin{cases}i&{\text{for }}i\in \{1,\ldots ,j\},\\\sigma (j)&{\text{for }}i=k,\\\sigma (i)&{\text{for }}i\in \{j+1,\ldots ,n\}\setminus \{k\},\end{cases}}}
which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.
If
- {\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}
then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.
Generalization[edit]
A Generalization of the Rearrangement inequality states that for all real numbers {\displaystyle x_{1}\leq \cdots \leq x_{n}} and any choice of functions {\displaystyle f_{i}:[x_{1},x_{n}]\rightarrow \mathbb {R} ,i=1,2,...,n}
such that
- {\displaystyle f'_{1}(x)\leq f'_{2}(x)\leq ...\leq f'_{n}(x)\quad \forall x\in [x_{1},x_{n}]}
the inequality
- {\displaystyle \sum _{i=1}^{n}f_{i}(x_{n-i+1})\leq \sum _{i=1}^{n}f_{i}(x_{\sigma (i)})\leq \sum _{i=1}^{n}f_{i}(x_{i})}
holds for every permutation {\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}} of {\displaystyle x_{1},\dots ,x_{n}}
[2].
Rearrangement inequality的更多相关文章
- INEQUALITY BOOKS
来源:这里 Bất Đẳng Thức Luôn Có Một Sức Cuốn Hút Kinh Khủng, Một Số tài Liệu và Sách Bổ ích Cho Việc Học ...
- cf536c——思路题
题目 题目:Lunar New Year and Number Division 题目大意:给定一个数字序列,可以任意分组(可调整顺序),但每组至少两个,求每组内数字和的平方的最小值 思路 首先,易证 ...
- hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup
http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...
- HDU 5933 ArcSoft's Office Rearrangement 【模拟】(2016年中国大学生程序设计竞赛(杭州))
ArcSoft's Office Rearrangement Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- HDU 4611Balls Rearrangement(思维)
Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- Balls Rearrangement(HDU)
Problem Description Bob has N balls and A boxes. He numbers the balls from 0 to N-1, and numbers the ...
- hdu4611 Balls Rearrangement
Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) ...
- 2013 多校联合 2 A Balls Rearrangement (hdu 4611)
Balls Rearrangement Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- MM bound 与 Jensen's inequality
MM bound 与 Jensen's inequality 简森不等式 在使用最大似然估计方法求解模型最优解的时候,如果使用梯度下降(GD or SGD)或者梯度上升(GA or SGA),可能收敛 ...
随机推荐
- AndroidStudio 新建不同的Drawable文件夹
以前习惯eclipse开发Android的朋友们知道 新创建一个Android项目的时候eclipse会自动生成多个drawable文件夹来存放图片 但是Android Studio 新建项目的时候只 ...
- 第六篇 native 版本的Postman如何通过代理服务器录制Web及手机APP请求
第四篇主要介绍了chrome app版本的postman如何安装及如何录制Web脚本,比较简单. 但是chrome app 版本和native 版本相比,对应chrome app 版本官方已经放弃支持 ...
- EasyUI validatebox 自定义ajax验证用户名是否已存在
<td><input type="text" id="userName" name="userName" class=&q ...
- Sublime Text 2 - Unable to find git.exe 错误
今日打开 Sublime Text 2,随即弹出 Package Control - Unable to find git.exe 错误.如下, 原因:曾经通过 git clone 命令获取过 Sub ...
- win10 redis安装教程
下载解压,没什么好说的,在解压后的目录下有以下这些文件: 在 命令行 启动服务端 redis目录下执行: redis-server.exe redis.windows.conf 如果需要 开机启动:执 ...
- c++ Dynamic Memory (part 2)
Don't use get to initialize or assign another smart pointer. The code that use the return from get c ...
- Java Web文件上传原理分析(不借助开源fileupload上传jar包)
Java Web文件上传原理分析(不借助开源fileupload上传jar包) 博客分类: Java Web 最近在面试IBM时,面试官突然问到:如果让你自己实现一个文件上传,你的代码要如何写,不 ...
- Swift-闭包使用及解决循环引用问题
Swift中闭包使用参考OC中block使用,基本一致 // 闭包类型 首先写(参数列表)->(返回值类型) func loadData(callBack : (jsonData:String) ...
- 主从复制redis
编辑主服务器的配置文件 注释下面一项 # slaveof 192.168.10.1 6379 主从复制 一主可以有多从,支持链式连级 一主多从 1:修改从服务器的配置文件/etc/redis.co ...
- spring复杂数据类型传递
1.VO对象与PO对象的区别: PO(persistant object) 持久对象:通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO ...