【BZOJ】2956:模积和
Time Limit: 10 Sec Memory Limit: 128 MB
Description
求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j。
Input
第一行两个数n,m。
Output
一个整数表示答案mod 19940417的值
Sample Input
3 4
Sample Output
1
样例说明
答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) +
(3 mod 2) * (4 mod 3) + (3 mod 2) * (4 mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) +
(3 mod 3) * (4 mod 4) = 1
数据规模和约定
对于100%的数据n,m<=10^9。
这里是链接:【BZOJ】2956:模积和
这里是题解:
首先,暴力枚举将会很凄惨:O(nm)。早就 GG ( Time Limit Exceeded )了。
所以从公式入手:原公式是:
展开为:
观察式子:[n mod i](同理 m mod j)
根据mod的定义可以将上式写成这个样子:
[n/i]向下取整,就是C++中的整型(n/i),然后再乘以 i 就相当于下图灰色区域,
再用n减掉就能得到mod后的值。【下图模拟mod的转化】
所以式子就可以简化为:
【注意:因为题目中i!=j,所以当i、j 相同就直接减掉】
然而这样还是O(n^2)的复杂度。
所以继续化简:将第一个式子的Σ移动,使时间复杂度变为O(n)。
这里是最终式子:
能够移动Σ的证明:设n-[n/i]*i为Xi,m-[m/j]*j为Yj。
(下图有点错误:n、m的值应该是不同的,但是n、m不同的证明也是这样的。)
这个是原式子展开的ans:
这个是化简后展开的ans:
显然它们的ans值是相等的。那么,第一步化简式子已经完成了。
虽然移动Σ已经将复杂度降低到O(n),但很不幸的是依然过不了。
考虑如何优化:
低于O(n)的复杂度一般就三种:O(1)、O(logn)、O(√n)。
注意最终式子,都有一个式子like this:[n/i](其中n为一个定值,i是从1到n的一个变量。)
但是这里有个很美妙的事情就是:
假如n==1000时,i在91~100之间,n/i的值都是为10的;
假如n==100000000时,i在9090910~10000000之间,n/i的值都是为10的。
这里因为在某一个区间中的值都是相等的。所以我们可以很愉快地利用分块的思想。
那么怎么算这个块的大小呢?
假设有一个块里面的[n/i]的值都是为k,那么其区间就是:[(n/(k+1))+1,n/k].
推导:因为[n/i]是向下取整的,所以k*i<=n,n/k为定值,所以i<=n/k,但i一定也有下界,所以i>n/(k+1),
即i>=n/(k+1)+1.
注意:分块求值套用公式的时候需要除法,并不能先取模,然而不先取模会爆long long.
但好在除的数是固定的6,所以就直接在求平方和的时候,MOD开大6倍,最后再模回去就行了。
(其实反过来也就是网上普遍流传的3323403,是[mod/6]的值)
这里是代码:
- #include<iostream>
- #include<cstring>
- #include<cstdio>
- #include<algorithm>
- #define LL long long
- #define mod 19940417
- #define MOD 119642502
- using namespace std;
- LL n,m,tmp1,tmp2,ans,ine;
- LL sum(LL x){
- return x*(x+)/%mod;
- }
- LL SUM(LL x){
- return x*(x+)%MOD*(*x+)%MOD/;
- }
- LL calc(LL x){
- LL ans=x*x%mod;
- for(LL i=;i<=x;i=tmp1+){
- tmp1=x/(x/i);//(x/i)求k的值,n/k为块的上界
- ans=(ans-(x/i)*(sum(tmp1)-sum(i-)+mod)%mod)%mod;
- }
- return ans%mod;
- }
- int main(){
- scanf("%lld %lld",&n,&m);
- if(n>m) swap(n,m);
- ans=calc(n)*calc(m)%mod;
- //处理i,j相同情况
- for(LL i=;i<=n;i=tmp2+){
- tmp2=min(n/(n/i),m/(m/i));
- ans=(ans-n*m%mod*(tmp2-i+)%mod
- +m*(n/i)%mod*(sum(tmp2)-sum(i-)+mod)%mod
- +n*(m/i)%mod*(sum(tmp2)-sum(i-)+mod)%mod
- -(n/i)*(m/i)%mod*(SUM(tmp2)-SUM(i-)+mod)%mod+*mod)%mod;
- }
- printf("%lld",ans%mod);
- return ;
- }
【BZOJ】2956
梦想总是要有的,万一实现了呢?
【BZOJ】2956:模积和的更多相关文章
- BZOJ 2956 模积和 (数学推导+数论分块)
手动博客搬家: 本文发表于20170223 16:47:26, 原地址https://blog.csdn.net/suncongbo/article/details/79354835 题目链接: ht ...
- BZOJ 2956 模积和
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2956 题意:给出n和m.计算: 思路: i64 n,m; i64 cal(i64 m,i ...
- [Bzoj 2956] 模积和 (整除分块)
整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数 ...
- BZOJ 2956 模积和(分块)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2956 [题目大意] 求∑∑((n%i)*(m%j))其中1<=i<=n,1 ...
- bzoj 2956: 模积和 ——数论
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 【BZOJ】2956: 模积和
题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} (n \ mod \ i)(m \ mod \ j)[i \neq j] \ mod \ 19940417\), \((n, m ...
- 「BZOJ 2956」模积和
「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...
- BZOJ_2956_模积和_数学
BZOJ_2956_模积和_数学 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数 ...
- P2260 [清华集训2012]模积和
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...
随机推荐
- 【Windows定时关机】windows实现定时关机与取消
背景:本人昨晚本来打算将电脑设置为晚上12点 30定时关机,结果写成了:12:30,所以就在刚才,我正玩游戏的时候, 电脑弹出提示:“windows将在一分钟内关闭”,我刚开始一脸懵逼,后来打开昨天敲 ...
- 六、Django之Template
一.Template由来 1.任何前端页面的改动都和后端有关: 2.前端HTML和后端python分开能让网站更加清晰: 3.前后端分离的趋势下,专业的事交给专业的人做. 二.Django中的temp ...
- XAF-如何在详细视图界面显示按钮(含示例项目下载)
默认情况下,指定了按钮的Category后,将在对应的按钮容器显示按钮.有时候,我们需要将按钮显示在详细视图中. 本示例源码 创建一个控制器,并填加按钮.设置好了所有ID.Caption后,给Cate ...
- 【坚持】Selenium+Python学习之从读懂代码开始 DAY2
2018/05/10 [来源:菜鸟教程](http://www.runoob.com/python3/python3-examples.html) #No.1 # 二次方程式 ax**2 + bx + ...
- arcgis--arcmap导出点的X,Y坐标
arcmap操作的
- 选题博客:北航iCourse课程信息平台
1. 用户调查 在选题的时候,我们面向北航所有本科在读本科生,发布了<北航信息平台用户调查>.此次问卷调查共回收有效问卷95份. 1.1 功能需求调查 调查其中一项是让同学们对平台功能进行 ...
- TCP半开连接与半闭连接
半打开(Half-Open)连接和半关闭(Half-Close)连接.TCP是一个全双工(Full-Duplex)协议,因此这里的半连接"半"字就是相对于全双工的"全&q ...
- 5 种使用 Python 代码轻松实现数据可视化的方法
数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使 ...
- Python20-Day02
1.数据 数据为什么要分不同的类型 数据是用来表示状态的,不同的状态就应该用不同类型的数据表示: 数据类型 数字(整形,长整形,浮点型,复数),字符串,列表,元组,字典,集合 2.字符串 1.按索引取 ...
- 20135208JAVA第二次试验
北京电子科技学院(BESTI) 实 验 报 告 课程:Java程序设计 班级:1352 姓名:贺邦 学号:20135208 成绩: 指导教师:娄嘉鹏 ...