BZOJ3812: 主旋律
Sol
考虑容斥
强联通图反过来就是一些缩点后的 \(DAG\)
一个套路就是对出(入)度为 \(0\) 的点进行容斥
设 \(g_S,h_S\) 分别表示选了奇数个 \(0\) 入度和偶数个的,集合为 \(S\) 的方案数
那么通过钦定一个特殊的点 \(u\) 有
\]
\]
那么考虑容斥求出 \(f\),由于 \(g_S\) 包含 \(f_S\),而且 \(f_S\) 合法,所以容斥的时候 \(g_S\) 不能包括 \(f_S\)
那么
\]
这里的 \(g_S\) 不包括 \(f_S\),\(E\) 表示边集,\(\{S\}->\{T\}\) 即集合 \(S\) 到 \(T\) 的边
可以通过把子集弄出来做优化到 \(\Theta(3^n)\)
不过我没有写QwQ
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod(1e9 + 7);
int n, m, f[1 << 15], g[1 << 15], h[1 << 15], cnt[1 << 15], to[20], e[1 << 15], pw[300];
inline void Inc(int &x, int y) {
if ((x += y) >= mod) x -= mod;
}
int main() {
register int i, a, b, t, s, j;
scanf("%d%d", &n, &m), t = 1 << n;
for (i = 1; i <= m; ++i) scanf("%d%d", &a, &b), --a, --b, to[a] |= 1 << b;
for (i = 1; i < t; ++i) cnt[i] = cnt[i >> 1] + (i & 1);
for (pw[0] = i = 1; i <= m; ++i) {
pw[i] = pw[i - 1] << 1;
if (pw[i] >= mod) pw[i] -= mod;
}
for (i = 0; i < t; ++i)
for (j = 0; j < n; ++j) if (i >> j & 1) e[i] += cnt[to[j] & i];
for (i = 0; i < n; ++i) f[1 << i] = g[1 << i] = 1;
for (i = 1; i < t; ++i)
if (cnt[i] > 1) {
f[i] = pw[e[i]];
for (a = 0; a < n; ++a) if (i >> a & 1) break;
for (j = (i - 1) & i; j; j = (j - 1) & i) {
for (s = b = 0; b < n; ++b) if (i >> b & 1) s += cnt[to[b] & (i ^ j)];
Inc(f[i], 1LL * (h[j] - g[j] + mod) * pw[s] % mod);
if (j >> a & 1) {
Inc(g[i], 1LL * f[j] * h[i ^ j] % mod);
Inc(h[i], 1LL * f[j] * g[i ^ j] % mod);
}
}
Inc(f[i], (h[i] - g[i] + mod) % mod), Inc(g[i], f[i]);
}
printf("%d\n", f[t - 1]);
return 0;
}
BZOJ3812: 主旋律的更多相关文章
- BZOJ3812 主旋律(状压dp+容斥原理)
设f[S]为S点集是SCC的方案数.考虑通过去掉不合法方案转移.可以枚举入度为0的SCC所含点集S',这样显然S^S'内部的边和由S'连向S^S'的边删还是不删任选.但是这样无法保证S'包含所有入度为 ...
- BZOJ3812主旋律
/* 这道题其实没有看懂 所以整理一下吧 首先思想转化成所有方案减去不强联通的方案 不强联通的方案相当于很多强联通分量缩点后的dag 转化成子问题, 问很多点的dag方案数 然后枚举作为出度为0的点集 ...
- [BZOJ3812]主旋律:状压DP+容斥原理
分析 Miskcoo orz 令\(f[S]\)表示使得\(S\)这个点集强连通的方案数. 然后呢?不会了 考虑到将一个有向图SCC缩点后,得到的新图是一个DAG,所以我们可以类比带标号DAG计数的解 ...
- bzoj3812 主旋律 容斥+状压 DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3812 题解 考虑对于图的联通性的 DP 的一般套路:总方案 - 不连通的方案. 那么我们只需要 ...
- bzoj3812&uoj37 主旋律
正着做不好做,于是我们考虑反着来,如何计算一个点集s的答案呢,一定是所有的方案减去不合法的方案,不合法的方案一定是缩完点后是一个DAG,那么就一定有度数为0的scc,于是我们枚举s的子集,就是说这些点 ...
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- BZOJ3812 清华集训2014 主旋律
直接求出强联通生成子图的数量较难,不妨用所有生成子图的数量减去非强联通的. 非强联通生成子图在所点后满足编号最小的点所在的强联通分量不是全集. 由于$n$很小,我们可以考虑状态压缩. 对于点集$S$, ...
- bzoj 3812: 主旋律 [容斥原理 状压DP]
3812: 主旋律 题意:一张有向图,求它的生成子图是强连通图的个数.\(n \le 15\) 先说一个比较暴力的做法. 终于知道n个点图的是DAG的生成子图个数怎么求了. 暴力枚举哪些点是一个scc ...
- BZOJ 3812 : 主旋律
非常神仙的状压DP+容斥原理. 首先,给出一个状压方程:$f_S$表示点集为$S$的情况下,整个点集构成强连通图的方案数. 这个DP方程还是比较容易想到的,但是没有办法正常转移,考虑通过容斥原理进行转 ...
随机推荐
- GPS坐标转百度地图坐标
百度地图提供了相关API:BMap.Convertor.translate, 但是使用上存在部分限制:1.次数限制:2.异步回调 可以用如下方法: /** * 地图位置计算工具(将GPS坐标转换成百度 ...
- mybaits中"#"和"$"的区别
动态 sql 是 mybatis 的主要特性之一,在 mapper 中定义的参数传到 xml 中之后,在查询之前 mybatis 会对其进行动态解析.mybatis 为我们提供了两种支持动态 sql ...
- asp.net图片上传代码
前端: <form action="/ImageUpload.ashx" method="post" enctype="multipart/fo ...
- ASP.NET Core 2.0中的Azure Blob存储
问题 如何在ASP.NET Core中使用Azure Blob存储 解 创建一个类库并添加NuGet包 - WindowsAzure.Storage 添加一个类来封装设置, publicclass A ...
- js字符串去重
js字符串去重: 1. 去掉字符串前后所有空格: function Trim(str) { return str.replace(/(^\s*)|(\s*$)/g, ""); } ...
- wireshark 抓包
Wireshark(前称Ethereal)是一个网络数据包分析软件.网络数据包分析软件的功能是截取网络数据包,并尽可能显示出最为详细的网络数据包数据.Wireshark使用WinPCAP作为接口,直接 ...
- c# 操作excle[转]
//引用Microsoft.Office.Interop.Excel.dll文件 //添加using using Microsoft.Office.Interop.Excel; using Excel ...
- win10开启 linux Bash命令(win10内置了linux系统支持)
win10开启 Ubuntu linux Bash命令(win10内置了linux系统支持) 第一步: 先在设置→更新和安全→针对开发人员中选择"开发人员模式",点击后会下载&qu ...
- github里如何删除一个repository仓库
高手请绕行,新手往下走. 作为一个刚接触github(https://github.com/)的新手,除了感叹开源的丰富和强大之外,自己肯定也想试用一下,因此申请帐号神马的.今天自己创建一个Repos ...
- clipse validation 优化设置