l2正则化
在机器学习中,无论是分类还是回归,都可能存在由于特征过多而导致的过拟合问题。当然解决的办法有
(1)减少特征,留取最重要的特征。
(2)惩罚不重要的特征的权重。
但是通常情况下,我们不知道应该惩罚哪些特征的权重取值。通过正则化方法可以防止过拟合,提高泛化能力。
先来看看L2正则化方法。对于之前梯度下降讲到的损失函数来说,在代价函数后面加上一个正则化项,得到
注意是从1开始的。对其求偏导后得到
然后得到梯度下降的表达式如下
注意当为0的时候,可以认为
的值为0。可以看出没有正则化时,系数
的权重为1,而现在明显
也就是说权值进行了衰减。那么为什么权值衰减就能防止overfitting呢 ?
首先,我们要知道一个法则-奥卡姆剃刀,用更少的东西做更多事。从某种意义上说,更小的权值就意味着模型的复杂度更低,对数据的拟合更好。接下来,引用知乎上的解释。
(1)当权值系数更大时,会过拟合。
(2)在PRML中,正则化就是通过对模型的参数设定一个先验来防止过拟合。
试想一下,在上图中,如果不加正则化项,那么最优参数对应的等高线离中心点的距离可能会更近,加入正
则化项后使得训练出的参数对应的等高线离中心点的距离不会太近,也不会太远。从而避免了过拟合。
l2正则化的更多相关文章
- 【深度学习】L1正则化和L2正则化
在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...
- L1正则化比L2正则化更易获得稀疏解的原因
我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...
- TensorFlow之DNN(三):神经网络的正则化方法(Dropout、L2正则化、早停和数据增强)
这一篇博客整理用TensorFlow实现神经网络正则化的内容. 深层神经网络往往具有数十万乃至数百万的参数,可以进行非常复杂的特征变换,具有强大的学习能力,因此容易在训练集上过拟合.缓解神经网络的过拟 ...
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
- Kaldi中的L2正则化
steps/nnet3/train_dnn.py --l2-regularize-factor 影响模型参数的l2正则化强度的因子.要进行l2正则化,主要方法是在配置文件中使用'l2-regulari ...
- 深入理解L1、L2正则化
过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是 ...
- L1 与 L2 正则化
参考这篇文章: https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc https://blog. ...
- L1正则化和L2正则化
L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...
- 机器学习之路: python线性回归 过拟合 L1与L2正则化
git:https://github.com/linyi0604/MachineLearning 正则化: 提高模型在未知数据上的泛化能力 避免参数过拟合正则化常用的方法: 在目标函数上增加对参数的惩 ...
随机推荐
- Fix-Mapped Addresses
一.前言 某天,wowo同学突然来了一句:如果要在start_kernel中点LED,ioremap在什么时间点才能调用呢?我想他应该是想通过点LED灯来调试start_kernel之后的初始化的代码 ...
- Linux 关机 休眠, 关闭移动设备自动挂载 命令
"+++++++++++++++++++++++++ Linux 关机.休眠命令 +++++++++++++++++++++++++++++++++++++++"indows7关机 ...
- Tomcat7 catalina.out 日志切割
安装步骤例如以下: 下载(最新版本号) # wget http://cronolog.org/download/cronolog-1.6.2.tar.gz 假设下载不了,直接网上查找,ftp ...
- opencv源代码之中的一个:cvboost.cpp
我使用的是opencv2.4.9.安装后.我的cvboost..cpp文件的路径是........\opencv\sources\apps\haartraining\cvboost.cpp.研究源代码 ...
- java.net.DatagramPacket/java.net.DatagramSocket-UDP Socket编程
UDP 的 Java 支持 UDP 协议提供的服务不同于 TCP 协议的端到端服务,它是面向非连接的,属不可靠协议,UDP 套接字在使用前不需要进行连接.实际上,UDP 协议只实现了两个功能: 在 I ...
- Azure Redis
https://azure.microsoft.com/en-us/blog/mvc-movie-app-with-azure-redis-cache-in-15-minutes/ https://a ...
- Angular External js library calling Document.Ready
https://stackoverflow.com/questions/51094841/angular-external-js-library-calling-document-ready Step ...
- angular学习笔记(二十)-表单验证
本篇主要介绍angular中的表单验证: 表单验证主要有以下一些内容: 1. required指令: 相当于html5的required属性,验证不能为空 2. ng-maxlength属性: 验证内 ...
- alsa project
http://www.alsa-project.org/main/index.php/Main_Page
- mac下framework联编需要设置的
点击target,然后,在Build Phases里的空白处用鼠标点一下(艹 变态) 这时,点最上面菜单:Editor/Add Build Phases/Add Copy Files Build Ph ...