支持向量机(SVM)(三)-- 最优间隔分类器(optimal margin classifier)
在之前为了寻找最有分类器,我们提出了例如以下优化问题:
在这里我们能够把约束条件改写成例如以下:
首先我们看以下的图示:
非常显然我们能够看出实线是最大间隔超平面,如果×号的是正例,圆圈的是负例。在虚线上的点和在实线上面的两个一共这三个点称作支持向量。如今我们结合KKT条件分析下这个图。
我们从式子和式子能够看出假设那么,
这个也就说明时。w处于可行域的边界上,这时才是起作用的约束。
1、那我们如今能够构造拉格朗日函数例如以下:
注意到这里仅仅有没有是由于原问题中没有等式约束,仅仅有不等式约束。
2、接下来我们对w和b分别求偏导数。
并得到
3、将上式带回到拉格朗日函数中得到:
因为,因此简化为
4、如今我们得到了关于w和b的能够最小化的等式。我们在联合这个參数,当然他的条件还是>=0,如今我们能够得到例如以下的二元优化等式了:
5、如今你还必须知道我们之前解说的条件一是,二是KKT条件:
非常显然存在w使得对于全部的i,。因此,一定存在使得是原问题的解。是对偶问题的解。
假设求出了(也就是),依据
就可以求出w(也是,原问题的解)。然后
就可以求出b。即离超平面近期的正的函数间隔要等于离超平面近期的负的函数间隔。
6、如今我们在看另外一个问题:
因为
所以
这里我们将向量内积表示为
如今能够看出我要计算等式的话就仅仅须要计算向量的内积就好了。同一时候要是 在支持向量上面的话。那么,这样就更简单了,因此非常多的值都是0。
支持向量机(SVM)(三)-- 最优间隔分类器(optimal margin classifier)的更多相关文章
- [置顶] 最优间隔分类器、原始/对偶问题、SVM的对偶问题——斯坦福ML公开课笔记7
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9774135 本篇笔记针对ML公开课的第七个视频,主要内容包括最优间隔分类器( ...
- 机器学习支持向量机SVM笔记
SVM简述: SVM是一个线性二类分类器,当然通过选取特定的核函数也可也建立一个非线性支持向量机.SVM也可以做一些回归任务,但是它预测的时效性不是太长,他通过训练只能预测比较近的数据变化,至于再往后 ...
- Andrew Ng机器学习笔记+Weka相关算法实现(五)SVM最优间隔和核方法
这一章主要解说Ng的机器学习中SVM的兴许内容.主要包括最优间隔分类器求解.核方法. 最优间隔分类器的求解 利用以一篇讲过的的原始对偶问题求解的思路,我们能够将相似思路运用到SVM的求解上来. 详细的 ...
- [转]支持向量机SVM总结
首先,对于支持向量机(SVM)的简单总结: 1. Maximum Margin Classifier 2. Lagrange Duality 3. Support Vector 4. Kernel 5 ...
- 支持向量机SVM(一)
[转载请注明出处]http://www.cnblogs.com/jerrylead 1 简介 支持向量机基本上是最好的有监督学习算法了.最开始接触SVM是去年暑假的时候,老师要求交<统计学习理论 ...
- 支持向量机SVM(二)
[转载请注明出处]http://www.cnblogs.com/jerrylead 6 拉格朗日对偶(Lagrange duality) 先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法, ...
- 【IUML】支持向量机SVM[续]
支持向量机基本上是最好的有监督学习算法了.看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的.我们logistic回归出发,引出了SVM ...
- 支持向量机-SVM 学习
一 .支持向量机(SVM) 1.1 符号定义 标签 y 不再取 0 或 1,而是: y∈{-1, 1} 定义函数: 向量,没有第 0 个维度,b 为截距,预测函数定义为: 1.2 函数间隔与几何间隔 ...
- 支持向量机SVM 初识
虽然已经学习了神经网络和深度学习并在几个项目之中加以运用了,但在斯坦福公开课上听吴恩达老师说他(在当时)更喜欢使用SVM,而很少使用神经网络来解决问题,因此来学习一下SVM的种种. 先解释一些概念吧: ...
随机推荐
- CocoaPods的ruby问题 Error fetching http://ruby.taobao.org/:
今天安装了一个CocoaPods,在安装淘宝ruby是遇到了问题 bogon:~ zhch$ gem sources -a http://ruby.taobao.org/ Error fetching ...
- Oracle自定义函数和存储过程示例,自定义函数与存储过程区别
参考资料:http://www.newbooks.com.cn/info/60861.html oracle自定义函数学习和连接运算符(||) 贴一段中文文档示例,应该就可以开始工作了: --过程(P ...
- C#中缓存的使用 ajax请求基于restFul的WebApi(post、get、delete、put) 让 .NET 更方便的导入导出 Excel .net core api +swagger(一个简单的入门demo 使用codefirst+mysql) C# 位运算详解 c# 交错数组 c# 数组协变 C# 添加Excel表单控件(Form Controls) C#串口通信程序
C#中缓存的使用 缓存的概念及优缺点在这里就不多做介绍,主要介绍一下使用的方法. 1.在ASP.NET中页面缓存的使用方法简单,只需要在aspx页的顶部加上一句声明即可: <%@ Outp ...
- python学习笔记013——推导式
1 推导式简介 推导式comprehensions(又称解析式),是Python的一种独有特性. 推导式是可以从一个数据序列构建另一个新的数据序列的结构体. 推导式有三种形式: 1)列表推导式 (li ...
- PO_职位职务审批模式详解(设定)
2014-06-03 Created By BaoXinjian
- LevelDB场景分析1--整体结构分析
基本用法 数据结构 class DBImpl : public DB { private: struct CompactionState; struct Writer;// Infor ...
- 套接字I/O超时设置方法和用select实现超时
注:如无特殊说明,sockfd 原始状态都是阻塞的. 一.使用alarm 函数设置超时 C++ Code 1 2 3 4 5 6 7 8 9 10 11 12 13 void handler( ...
- Nginx 的线程池与性能剖析【转载】
正如我们所知,NGINX采用了异步.事件驱动的方法来处理连接.这种处理方式无需(像使用传统架构的服务器一样)为每个请求创建额外的专用进程或者线程,而是在一个工作进程中处理多个连接和请求.为此,NGIN ...
- java日志 -logback的使用和logback.xml详解(转)
一.logback的介绍 Logback是由log4j创始人设计的另一个开源日志组件,官方网站: http://logback.qos.ch.它当前分为下面下个模块: logback-core:其它两 ...
- 有关VS中单元测试的一些问题
需要config的测试 测试中如果调用的类库需要使用config文件读取配置,可以通过在测试项目中建立App.config,并添加相应字段即可.