Description

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAvkAAABgCAYAAACHSm3aAAAgAElEQVR4nO2dv88dxfX/r7/69CENEg22wChFJPIDISqw+ZEqUUSElAKbwgiURKEiShTZAssg3KBEUUBKAYLCNlVQUkAHNj/SIAoCXQQ4hgZBkV//gL/Pa5X3o+N5Zmdndvfe596b90ta+7l3787OnJk5c+bM2dkDV3dYGGOMMcYYY7aG/7ffGTDGGGOMMcbMi418Y4wxxhhjtgwb+cYYY4wxxmwZNvKNMcYYY4zZMmzkG2OMMcYYs2XYyDfGGGOMMWbLsJFvjDHGGGPMlmEj3xhjjDHGmC3DRv4Ohw4d6o4DBw5UHw8//HBV2p988knT71fJ0aNHm/P17rvvDp6nvEO/S0FO1ME2gWyRcQs1ckO+Tz31VHN+uG4My6oXtZUxZVkllL+1HpeN9MqFCxeqr0Heud/ndAC/G1vvylurDkhp1SXKM/dP2Rbd0lrnMCQ/0iPdnNyGrlvHcW1OxspmW1nHfsT4MaaONk0fjsVG/n954403Frz8t+Y4ePDg4uTJk1XpvvLKK4sjR44sXnrppez5/ap4Gt7bb7/d3HAvXbo0aCxS3prfRQ4fPrx45plnRhui68jLL7+8uOmmm5qvq1EId999d7PieOedd0YpQ/qGrpNCLR21BjHyOXHixOLJJ5/Mnt+vvhFBuX/22WddX0nLyP/7Nei99957XT87duxY9TV33nnn4s0339wziFEHab974YUXFvfcc0+2rVAvOaeIfqu8cb8SGvz6oH2cOXNmMB1x4403dnlGl6TENrypyCChnC0gx6F2Shs4e/ZsU3tW26vt77k2gz6JOoW2KcM6PaQP1PdSp1u8jt9okpge0bBTW+6DfnD+/Plsm4rQrtK2RZ76HISUeVW6QwbqVKeldOG6TexOnz7d/X/LLbdkdXTfOLJu+nBpXN1Adjrd1R3lf83x3HPPDZ7rY8dov/rxxx93/yMSHRA/c+w0gN3fix3jac/v9Nvc9+lBeqtmp9F1+UM+sSxD8Huu64O0SFu/5WihTxYteVwHkBFyoD3SPmrht0PtQef5rWRdS4t8SV/tQ2UZgnLH3/H3lL7RWr65QV65Nqw+3yeTvnJHHZPKQOdq2jrXjukTXJO7h3SBylbqt5yPOiD2eeDvXF3nZCU5ptcNtY++9hrzpbor1UFNm14XlN+S/s0R6zZHlFvaf4dIZR6paZ/pGDGmfLnrWnQj10ovlvpneqT06QrkEGVKvmRDrGJcG5JFas+Uflejs0t9dG6Qd9+YxvdDenLd9OEy2EgjHzQ43HrrrXvOqeKo5C+//HIwrb5G3jcHqu0UVOJ+Gyk5olKDlklGqkxrO77omxDJoCud52gxmPeLaLgA5apVeJpsilpjWHJR2+8zMEvnU8WjcrQo61ojYWiyuA5ER0Ha7jSAjE0TUjn1ySTngKg5ShMQlSHtf32Tk7Rd9A1qaftVuUp6MNfGxjgIcgZnzomxaQ4DoFwqW2pEDJHKsqbtxDrMTZR0KO0WY7iUt/0w8qUTU1onPH0Go9LarzFsDiN/qA/vB9I1/J/r90NtT6ybPpybjTXyJfySl+3xxx+vSmtZRv6qZrOtpPnKNcQ+ckZ+mtbYBjzGM72OIJNUkdcqnJyRnw40Y1d+WuoZxtRHzcDYN6iuEzmvsNBq3hg0kYVUTiXZtcirtZ5FyStb+l26ekcZYjnGGDYtunNokhN1lNpe6wRiP8mt7rUYwzkjP01/7IR7zGSsdP1+GPk55tBRqdGYm6ivYrybauRLn0SDVx70XL9blfMmnYiqv8v+mzqZWid9OIX1HmkLaGb82muv7TmnWVzuXI5lGPlD3o39mgCos0JsaENe274y5LzUsfO1lHEbjHzyH5f5hAaNvs6dLuml3oT0t9FoqWWqkV8KSxM1Rn7N6sR+kluBU/21GPipck/lz7lYf7nJoVimkV9aJcj1R7UD5Tf+LoZ96P/WQT8abGorNe28b1COKyT8vwmrgSL1Dse8l0IV+lbs+H16TeqYaQ3fbDHytYpcs5pQGis18WlNp7buY7mkm1tJx8b0czRMl8lUI19ljzLpy/uqdHeuTSgEeaoRvW76cCoba+SrInLhOOqUNaE6SktxczXGx1CnGDKYx3orppIaEeoQIm2gOdK854z8mGaf16w1BGETYmdTg1wTvdSLWDLAUgMtp0yjN5i/++pL96qRb9+KWGrkp+025gWGjHz1sT6meganUvLeSJYtA0g0KnPexphWSS5Tjfx0Ehll3Nce07oVKoeMQ/7Pya00YUt1bWxnsc+0hEzEPKTtXkv66zahLJHzJlOuKCvpmFKfSftUzsjXd7pnTuatBnpu/Ev7QM6TX+PZT3VTrm8NefZTR1wMh4py7+sH8d65dNbJyB9TV6kc0r6Yc3jM3Z+GnIgR1WeNbbVu+nCZbOTuOl999VX3lPett966uP766/ec//DDD7sdcHLnSrBbwNWwiw6wI0n63RB33XVXd/+5eP7557un8Sk38JQ7n/m+Bu06wA4T6RPe7F4hOEcZ404iQzucXLlyZfepdp4wJ18qO9fyd273FHYroA6jbJH1Tie55rudDtOl0bKLSCuvv/56l++//vWvu/nWrg+SeQnt4vD000/vySdP6mtnBv5XG8rt9JAD+R4/fnxXvuwYEHfsoa5efPHF7LXILe4aJVlG+So/fTvczAm7DZw6dWrWNGv6hr6rqU/6QLoTlnZpOHfuXCdD+nftVoak9cQTT3RthB0aaA/xXux8Apyn7ddAfnK7OZR2OXnrrbeK9Z3bcYO2lYM2HmVEu6Yscccx6Y2+MkVdi0weffTR7nvtOCKdgnzU/mv7DFBXsY3fd9993fdp26/V6S3QxmIb5LPaKbqmBnb8IM+5/KFnBPWI3mSHEclnCPSufou82f1DlHZtYlcffh9lx/jBEb9jN5qo90qg326++ebdz59++ungNTm4Lu5W8/nnnw9eg+yUZ8qsvknbg9gP1Odz42JsyzEdpRXTiZ+1K8wqSMfVePTZKnG8EnFnJ3QAbalmx6q+nYaGDsks3oM2E5F9w/fk9/LlyxunD5fJRhr577//fvf/17/+9U548aDC//Wvf3XbHc0BldWyVSG/VcNJt3TSwaBVC+X5xz/+sfj3v/+9+N73vrf40Y9+tPjmN7/ZNUqMhtIe49qijm2iyFON0oWoAGq2fcLwUZkffPDBTtlyb7bRXLfttlLI57PPPru47bbbum0pyS8DBPJF5j/+8Y+L1yNfjLhaWYGUEUfN5IVBk9/SpjGGkC95lGFYW69zgNFVo/hSkDNGixR0n1JvGfhk7JFmrm9Ql/G7Dz74YLA+RdzWD6MK+SNz+jT1gWGTGp99WzQyoGAkQF8bQa4ydIdgksd2s7Gf0g6i8ddKbvBvHZDUDpEB5UVO5LVl60ompdInmgCo/df0GbXPaORJd/dtYzw3v/71rztdQhuk/f3kJz/p2t1Pf/rTxQ9+8IPiWCKD5d57791jzPQh50zLpEW/xUiL8mSsqG2Hc4BBFif+tWVO4bqoO8ZOFiB17NEP0u9qdX1sy6QTP0cH2zoi+0HHxYsXdyc7cnxAdPJBTh/S9/omGTVHOsbFvMm+4R7KE3JOtz3mqH0ny7rowznYSCOfxgY5Q54KB5TkXNDBqaShiokGPsQOnXo6amGgYHBAGTJwYZB++9vf7s4xyXn11Vd7r9VMfFWDm+5JQ8YjxH0x+teZP/zhD51x9Pe//72bHD7wwAO7g97Xvva1TlGUvL/IFyNuVeBJwfNFO28xDOcCo6tV8aUGPvQp85aBj77x2GOP9faNP/3pT9d8953vfKdYn3HgiHnUgI7s5eWMXkDJoTSR5nxuQoSewuhDp91xxx3VZZ+bFs+VJkAQB1IMVA4GfXSmPFzoOxkCQ3uqI78xk1bSRUfTPuMEDMODSXj0XkNcCZlzwKVt0R5pM7RJ/qYdsqqsleU///nPvdfLK7zMlcuIvLjIg3aITlnVvZE7OkHvMACN7dErXwP5Rm6qT9JRHbcy537m6+LJH4Pshzh5lE2D7ZXqbuoxXSme2wGlyYVWuVL7hvuzsp3mHb1A3mtXrNdFH87BRhr5NCbA+KVDxuOf//xnd27OAZN0GaS/+OKL7HmFayxj6feXv/xlNzhgSOIVip2GsCQtQ+8HKFEGT+WJvwHDBQOM86v0Mo8BZaWXYqAgvv/97++ew/PbFxK2ClAADFZaIsVgANo2f69yQB4LSi418OeCvgH0A7z2ad9I+wsT4lJ9xoEBuctIlNLGiMx5h/hNaaKHDJj4YnymSp26JN2+lzitihbPFZNMTcZiGACGtZwsMbxBK5dcU5JT7iVHuXCdODhK9yI/BlKIEzCNFbFc/D6Gsc0p9//85z+L3/3ud13oH06DX/3qV7vnFA441ypzK3qruAz7OLkhT0yGYqjJsuFFkaxIIX/aEXVJPqi/lhcj0r/UHsm/xmmFMqUrOyVif4/GXRquw1GzSr0unvyc3tKhcXuIONYjWxmyos8+mhOF2ah9pDqaPOYiKGrDx8Q66MO52Egj/6OPPuqNuUdo11133ewDJt7evhm+lktT5gjXwejUgBFXJ/Td/fff316YCciDrIEyNnwNHhguKJUp4QO1xLcctr7uHWTU027SwZfv8OyvElZA5HWU/GK7u+GGG7q2jdG8H8u9reE6TEJyBv4c4TrUHYZBGp6X6y8YNOiN2vrUYBKNwdwzIxylCYyeQ8CDw8CIvHLttNVzmRq+tWFTywKjO3rV0pXL0puNRYyTLYXrxNUz6d6+tB955JFrnlnB6zY04MfJRiuky8rRX/7yl+5zdDbxHWPT7bff3pzuFJiw0q+YbPOsQuwraneEF9GGat/kPhV58eWkoD4feuih3fbD97XhETiUVP96BkZ1Lgdd7VuCYyhlKVxnmSvkGtPm9PKOicmPUF/p7+iXqS3TqsfGEp+DiDqaPOYiKFb9ttk59OFcbJyRr3jGnDdEg/uYzoFXITU4IHrxWjveHOE6kBswUNYMGDReHuaqeUB0CpIDhpPKgcxUD/ISgWb0GKQ6tywUj8ehWXMrOaMQmfLdD3/4w+68vHDLQoZFLA9EpckAFFdN4gNrq4rxGxOuk2OOcB3guQ+IhlOuvxCWBa31efbs2WxIR+2kMl3FoHyxneIIQE9ghNU+9wOp4Us91Hgr+9pJy/J0jlWGrNWCPBUigXFP2ZFzyZDlGkLgkCn1UhvDm6KVwTiZwBiln+OcGuOQaCGGnumZEtohk3TpOfS0HuJX24lxxMuEfhGNZOSiVRdR06bSVTS865Q3yn3d2iZ5pJ31OQf0PMEyVj/HQltJDXgM7Tk3GBkDclT/jiDjGlvtf0EfbpyRr0E9F3OvwX1MPD6x432GR86DtEpyAwahB1ouZNBadkiJyh/DQ1DSeIDoAHQ0GfxMiDA6MJAA73TamYYGETooR9z5YVnkjEKFduCV+/3vf7/0PMiLGQc+xdxrOVJKFrkgXz2whixzciotw9J2Dv03DreW3M4z5HvVXpIIXso0BKevvyCzlvpk4CD9XEiHJpUlb69WuyJ4b9BPMsIwJEkbo51+U1Mf1EEapkU9DIVuUR7FssaJS7rLVesEThPUMYYrbRB5IMu5Dd/4QCqgo1b1oHq6MqiVJFYW+PuPf/zjUu8fQ89i/0Sn4NWW40ptEY8sspGxhAMnZWgSSZpcX+NsiQYs16SGeS0xHdoP5WnVR5oIaResMag/p+nEMilWXKsN1EUurBgdgT5YlVe8BvKbC/mJz7qwEhN/s+x4cz3QyipL6hVHxtRFSS+toz5cClc3CPa93xnQu71GP/jggz3n77///u5c7UuwxBwv58ilOdc++dddd92et/fyHeWcstcueRi7J3lahvh2Se0lqxdv5cqa2wO67+VLpTzGPYDHvgCDdkO7Sr9D5lPfBjn22tyLkyDWmV6swblc2dN2mqYZX/CUY1lvvC2pndZ98kkr1zfSMlFu+gt6o6ZOcq8eL+213fKG476XGMV9u0vvnhii71XqOZnU6DLOp3uXK5+5F3jl9GV6b/XbdN/ttL/39emc/Ep9Vfti6x6ld1XU/KYEbSwdh/Sd9uvPjV81lF6YNkRuT3qIbUBtOSfH3Evi0jT7+kNMo0Un1u6TP0Tu92rHMa9qJ7Fd5soSXyBWSmdIl/W9WXdob/4WWl6G1XdP7f1eYsp410r6kjiR2l19Y9y66cNlsjFGvl6SEQ91xNK5GoZebpX7/VCDz6UZX8DQUsmUJ32xF4ME309RBFOM/JwBlDMqVd4acq9vXwW0lXTQRd5TX1YyRenllHI6+EDLC5paX9VeWx/py2CG8pLLQ5xot7TJXN/gu7TvSTHX1Cd5SV+Oorzl6uVIeMtxCcm/9NvSG6eHiHXQ0o+GnBzpZHMoL+n5VsOu5m3hafp9elXnUplLFy/jreOk+dxzz+35Xk6ZKfcca+RrchHJ1WV8e2cNrTqupi2kb+uteVFfH2MNq6G3crfIpzWdKRM5qHn51RxlA7UhTXpW8XKv1EmSyjjtX3qJWy3rpg+nsjFG/jJpNSxrGnKfAmo1tJbJ2Fe8p/IaUri1g+l+GfnLYuwkIVcvpTZTq1zHGPkt3rLaV3b3pbkO9a83F+ZYllE4RM4zXyL3lshVkjMmV5EfySgO0qX2OFb/7Sdj+0d6XcnQaNETY4z8lkl8SVe03Ld1RdK0cTB5E/OyoN772s8Up+Uy2S99KA7wz8IYY4wxxhizNWzcg7fGGGOMMcaYMjbyjTHGGGOM2TJs5BtjjDHGGLNl2Mg3xhhjjDFmy7CRb4wxxhhjzJZhI98YY4wxxpgtw0a+McYYY4wxW4aNfGOMMcYYY7YMG/nGGGOMMcZsGTbyjTHGGGOM2TJs5BtjjDHGGLNl2Mg3xhhjjDFmy6gy8p966qnFoUOHFgcOHCge/K6FTz75pLtuKkePHl08/PDDk9OZk3XL07vvvtvl6cKFC/udFWOMMcYYs2SqPfkYrFevXu094Mknn2y6+X333bc4ceLEZMPz7bff7tJZF5i8kCcmRjVggMdrS5MoZJV+zzU1kKc77rhjTJGMMcYYY8wGUW3knz59uujFbwUD+LPPPlu8/PLLi+PHj++mIyO21guOgXzw4MHFnXfe2ZyHZfHII4/sTjpqDHBkoPIz8SlNpN5888093x8+fLgqX8ip9rfGGGOMMWZzqTbyz5w5M+jJrwGjXEZ8Lh2MWDh58uQ11+U83EwUMJCZLOjzXJOQsTBJuXLlyuKll17qVjYw2ofgt5T9448/Lv7u4sWLa7ViYYwxxhhj1pNZPflDXmuM8CeeeGJ3UkCMeITPly9fznqn+ZxOCN54443OyI+fp05CpsKqBPkQ/F0btlMC2TJ5qFmxQI7phOeuu+7anQylR1oPxhhjjDFms5nNk3/kyJHOEM8Z+sSSY0xi8L711lvdd3i5MVr1e87fc889u+drOHv27OL8+fO7n997772Veu1TMKzJD3JQnD1/nzt3ril2PgdlrZ0s3HTTTYtnnnnmmvp55513ujrK1dvTTz89Ol/GGGOMMWb96DXy5QnWjjny5OP1VchNPHiok/9vueWWPYY2Bn3OO4+RT/w6v+d8y4O75IHwlWPHjl3z/bLCWbhf6TkB5IUxr/wozh7wvmNkI5uc15x0JbvobY8PJJMeMh77kPLnn3/eGf/GGGOMMWb76TXyMcBjmIs8v3h9FXIzNkY/ThLw3g/FoueuJ/wkhsXUUtq9pnRwPwzt1NDXg8LkJQ2lYfVDcA65aDLEIW9/jMnn4VjJUBMGJlpMXjjH7jhjtubUsw7GGGOMMWb7qQrXifH4GLuA51phODG2OxcukxrWcZJA2niwW+B6POMKz9FBPHzcqSbnEc/F9rccGOSxTNrtpnbXmphWTXw990FGui/ce++9zXH0yIXr5ng+wBhjjDHGrDdVRn6Mx8e4Bjz9kHrvY4y8ICQn/k5x93FCkO4HnxrnAuMWbzjg6Y7pcm883qlhnob0zIEmC9H4XgbITjIXlIcVkFqDHc8/suE6VhzGvLjMGGOMMcZsDqM9+fDggw/uGuLa/SVnUKcP0ypcB+M15y0nHUJTbrzxxmuuw6glXIiHRbeZ+K6ARx99NOvx1/MLQ8a66kf1wuQEg586jS/hMsYYY4wx28NoTz5gMCrWG48zO7oMoXAd0rl06dKe8xitPFCbbheJBz8X975NEH7Eg7fIVCsipVUI5K0VlRxMEkgrXW0gzZqJUny77tS3EhtjjDHGmNXxf2Mu0sOjGIp4mhUfXjJI9Ybb+FDuQw89tLj77rt3DXeMUhn4KS1ba24SrIDomQSFGgGyGAoFQt59Muf5BIXo5KiRp543UH6WEfZkjDHGGGPmZ1S4jvZbx1DE8MMox9gvke7WAxj+bO2ov/W7/yUUPpPG90+N9S8Z+MYYY4wxZrvpNfK1Uw4GfoydTx8C1faRp06dat7akUnCCy+8sJtGi2FLqE+6i07f7jrrHm6yrsY4KwuS37LeP2CMMcYYY+an18jHAC9t9aiHZ7V9JB74y5cv79kDPode/sTBg7QtW1AKwnxatr5cV0N6GVAPJTSB00vMbrjhhuzvtLd/7XafxhhjjDFmPRgVkw/a6z7CxIAY89RgT/fOJ5RkajhKn2G6TjARmROeaaidDKU7E0UUj6/VjdYJljHGGGOMWW8OXB16Pa0xxhhjjDFmo6h68NYYY4wxxhizOdjIN8YYY4wxZsuwkW+MMcYYY8yWYSPfGGOMMcaYLcNGvjHGGGOMMVuGjXxjjDHGGGO2DBv5xhhjjDHGbBk28o0xxhhjjNkybOQbY4wxxhizZdjIN8YYY4wxZsuwkW+MMcYYY8yWYSM/8NRTTy0OHTo0KQ2uv3Dhwu7nd999d3HgwIHmdI4ePdrlR3zyySddOvw/hocffnjS9VPh/hxTiHJN00bOLSAHZLxukKdl1BHyIe0+Gab8L8h6KjVyoM/FflwLemRMO5iz/dAG+nQG+attB6TD70mrdJT0g/Robfsdg3RsS/ueY8wAyajv3mPakK6bqneNMZvLVhj5KLHSIFLLxYsXZ1GId9xxxzWfjxw5Miqdu++++5rPBw8eXBw+fHhUWi+//PLinXfeyV7farSNAdmeOHFi97MGx1x99Q1oyDU30JP2Qw891JQf5HDPPfdc0z7GGiBzgZHx9ttvL+67775R15cG9EuXLnVpHzt2rCqtbZd1DdIrJWqMQvpxq/H4xhtvLG655ZbmvvnWW2/tXicjvXSUyvfpp592fTbVGaT92WefLT7//PPqfFH/V69e7T3QbSdPnuy9nvaLHlX7lUHeUjbyndM5msS899573T3uvPPO6nKdPn168cwzz3R/9+mymsnJjTfe2OUtd2/yzX3GTCaefPLJ7v9tnGQbYyq4uiGcOXPmKtnl+Pjjj3f/3hmEuuP8+fN7rtkxartztSjtlt+PPXYGtd10+HtKWmJngMqeRwY16eRkOAe5euBe1GlOpiW4jnLGtKc0Y64ljRLUT0u7GEttPZXqizQkn5hnvmut322WdQ20z1wbFZQl9uMcOs9voyxr4Pd9ski/5zN1r/9L+RZD5evTnUPXpdCOatpzqd6RxVDbGSLVQ9wv1kmqP9Uf+/pNTZ/S+FSTt1z70FhX03c1rij/ccwsjQXGmO1lI3t4OrCizFqM/JxRHRViyehuNVLGDO6QDmqkOWRQlPI0dYCcQjRWqA/yMtbIT6kxjFNkdNTKZBWG51QDWsgo4H/JV99NZdNlnTN6ZNjl9MSQMZv2ydpJWpTFkCxL52PeVMct/byvfH3OAunYPv3YJyuuGzJ0S/WussmZUzMpyFEy8nP6lfL06e6aiQ55rdXZuXGitU5TGebytyxHjjFmPdmKcJ1ITczwlStX9iwXv/TSS104C3+zVJ6e19GylLsOsFzMUvl+5Zu64P5a8idsiKX3uSC9vrraGdCuCRGKtC7LLxtCYGh/WuZneV3PUbSEWCBnhVjcfPPN3XeEIUAuLe5Tu5S/6bImdCHN99NPP92do//PAXKI6ROGUtIhffLkoH5K5xWKIbjXXHLeMRZ378PfCpUh7IR2GfPBeUjzE6HtlEJrCP/54osvste+8sornVzvvffexZtvvrl7X9o4faEv7K8F7kHYTQyrIURG7SOicDKVNzfeEAJ0/PjxbqwZA2kSdjV1zEl1BfJz6I4x/ztsnZEPDCgtoNhTQ7g1hlag1GMMK2kSJ9sK18T8kOaYAYOBqjTALjv++YknntgdDJEzhqA+k7cpA7Ni99NBftMGMfJ77ty57m+MqWh8poYd5/XbPjBYkbXil0+dOnWN0RYP4vRp+0MPa26LrNPnPZhw0iZzfYP2GduoDEDKzGeMMIxTnb98+fKe+x0KD9Cu8qH3vpj1qfX1wgsvFI35PpBxacKiiWBORui90rMkqVPmzJkz3aQgB7rw0H8fcKX+0ntgBAN6kTznDOyow8jvXXfddY1c+Y606XNjZM690ZtXu4WcNh555JFr2m9snxyUnz6/qf3XGNPG1hn5DLR4fFrA45I+9DXGK5Y+qIey57vWwV0Pa0XG7JrBNaXBdehht6lgFMUBBTlHjymDcZqnHJJHnJggCwZmyocHTtfz+dFHH23KZ58ncBUPJHNvDHraGg8y3nTTTd33fKYdxwcDW+ChSYgrKekOJciV1QMMFk1Mt0nWuRUPHoKNhr4eCM/1D9pnbKMyNJmAy4MdPfXIOYc81BhgfUZVziMNUybmmjBOqa8I933xxRez55BDRBMh5VWOBk160jJJT2AcxzZPW51rlYX+hQyYFGBEU3/0PfKoe/C/jOG++8Zx4ezZs10bkSOH/PLgvFYaNGGvNajJC/1+jGMIqJ90spO2Aa1Yc4y9jzFmM9gYI18GipZ24+4FKexUUJsmihdFOHbXGsGgxMDAACJIk+/iMjT3yxkfETwwKB+flzIAAAmfSURBVOIIRpbCLkChHH0gl7FLxSWQ2S9+8YvueP3117tBrW/nCIyidHAZQwyzwHBhYoLBNNfgT3tKww/mDH0oQR3F+8S2gfwob6z3Gqgj7cyEMSM5aTcU7f5EOE9axnWUdd/EYOjgXmlf031os5q86LupEw3SYiIrY5a+rkkbYMj2Gcn8nhWadMK76ol5CYWB1RirmgilITboRxnBpUP6uHY3qBpIK7Zj7kHdR3mqDdTsiEYbYpIorz51SFlTvcs9KBPfa9KTTnRYDaB9MF7QhtLJdnrkxj3auzHGRDbGyJeiTONc06XjFsOWpXq8b9ouUEe6DF/jQZNHJzdZkBHB4Ej+SnlEefctE8s4Ix+Kj+5LA/C6lkJ1WgcFDPvHHnts8bOf/Wzxm9/8pjNYGJCGJlXaum5Oo7nPWNo0ogFLWI3CQ+QJZeCX4chB28EgSENIItQ5ss55XjFeNOmsNaD2W9a5Z2hqj1xfQ2cQdsLkJfZp5DZ1H3Z5TtEreM2pXyZX9AFkP9WZ0EJcRZN3uhZ51KUPQf2XsrWE+UUdpLT0zEls/2rzceUqPpdC/4hplSYbWsmqQXWi0BvqkMnZ0Coa/RLkgGICU5oM0xZ1Xl5+HThA4soLtDyPkZYl5nFsGzDGbD4bY+SXiAM5hqviLktgCGNQQapw02V4HX0KHCXPPfHq9IGCZXAsGfgMKOSplI7KNWTgaxAYCtepBa/9b3/728Xzzz+/O5AwEF533XWLb3zjG8VrY1z+oUPjXvKTEgezOJBt2iAWDVjah4xElvjjsnoc/GN8fWqoR9mme5zjZcTwbNnfHLZF1hE8zRjBDz744O53eHQp31yx80x+WS1B7shqSqjMGHLhOrWkD95GkBnlkZz6HpgVUQcpLeSPlz/G06NPUkcJOlfnMfhj+JRCTeKERLHoOWIYZJwAaTWSdOhz8vjTF5V2OqFAj6ksckDFfJDX9D0FLStF6MuWiRR1kerz3OSY8q3DQ/DGmNWwFUa+kKJDAUtB5pa2dY4BYw7w/pTiXVHwJe+LYBmbdPqUO4NIyVukgWjMg3FD/PznP98TVkFevvWtby2uv/767DXycMUBlWs0iE998FbEuNMWQ2bd4HkSrYogZyZHaVvoW32RQUEbUZtPB3Mmj6wG6eHCMWyLrOWxZwVO0C5p40NGaw76HvJV/ekhXOTN3xjFc4ae7CeSUy05Tz4gD3a1ib8r6S6MVu0YFUkfKkevpy8SBK6Vzo8TICZ26hNxlUye+hhzD4wvMSxTxDykYUocrcb1oeTt6TW/B+ld2p1WR3Swet0X7mOM2T423shHoWH0MmAQuxwffkOppsuXKDcU8FyGsAz4FC1DQ5/XPf09A0e6AiEljXHHYFZa7mcgSss1R7gOkyd++8ADD+x+99VXXy0++uij3ocNAfmnD37F/Nc+eJuDeq8ZqIZWdEQarlWbB8VfzwFGzA033LD7mTAZ6i/1AObagJ5/6DtPHZJPztH+W7yK6yDrucGAQ14Y5lEWhLjVGmPoG4X1aTekeC11qV2x5nIotDAlXGcInh+I7axU9zlPvtDKprz0JTBaCdmJhm+aD70dthb0a1yljbpI28JGnUo/iI6KZaKwspq+x8Q0PrSv1UAcT6l+ZYJTGv/i8wCr2HzAGLM8NtbIz3l+GQBy3sU4KKDc5vCo6cGp1DCVgtQydB8xT6mHW+dlPJRCa4Y8PXOE68iz+d3vfnf3u/fff7/7/7bbbiteuwzvJfmJIUB9tMTlpuFaNSjsZa4H3kgntgH+ZkCOhv8QfXWKx1orTdQJ+/LXsC6ynhMMSj0Eru0KRU171cQ7emohGrpxK13qNXqgV7WV5pRwnSGmhHxoYoS8yJNWQYbamJ5nQu7R8I2hNNoStTZ/rbvLxJ2olg0GNhN9JiBDE2jKne4qhwyQldqbHGJDZY5hPpsckmeM2SAjH0UlAxqFly6Bll761GKA1KI4/hTtTlIaCNJBPvd7eWaHBqtllC1FMffE34tnn322+//222+vSiPGp05dKmZJPQ5UU+PE03qsfScBdYSx2BK60Idkkq624I1VrK8G+lJ4EwZU2r7kjYsGLMZtTczvush6LmiHh8JD4MSXI+MWtHNMDJtTzL1W8FRXGKAY2zgggLrJ7ZY09DC+HgKtnVAi19SY04rn3Aw945GG6+h5p7iz0VBb1Eu4gHA0eeu5nnTU5vm7dvchTdamPmw9N9KVTD7VP9Su+kIamSTl6pY6JwwUHUBfXmVfM8bsPxtj5DMwotjjA1dC20X2xarHQSBHalj17a6jB6r6qDW48Y6W4qJrFTFlKj2kOxfE3D/++OOdYc9ggQw+/PDDxa233tobjw9xZ4zo9ZwSKoVBlr7oJo0TV1x0XwzvnGDAEOIxFWSShjalB6EJ6QPhkdyDkNRX3EYz3o+2U2rP6ybrqWA80Q5j+5vDK6t+iJGFHJAROgrZ4njgb+1Igx6r3eJXyHGAXlrVDj253XX6QO/FrUJBfZ9JYWwz6crNof++JwL5lXbLYZKkeqP8cTtehaGJknwYQygP9aRV0mgcR12vmPxVgCde4VXSlXGc42/JLmfsp/JPwcCvdUbo/Rwc+7VdqzFmJq5uOBThzJkz13y3MwB038djxyDZcy3XpdeOhfRzae0o1j150bGjtLN5yuV1Z3DvTYfy5tgZXPeklcoml4c+Pvjgg+76L7/8srt2x/AfvCbNW0keNXU2lH4qp5xskAu/K5HmMwdpkNYyoX64P/fpaxtpnlSn/LZUTqWd60M59lPWU6GsNe0JOcS81NRvrny5a1XOvv6aS6O2f6ouh0j7f658sQ0p7bSMNXXfl0/koPzG+1A/uXxRJzH92G6HDrVr0huST3o+pz9zZdG1NUdfX4hptZLru1FGknEqN2SqujDGbCcba+RrkJkCynEuI43BYI605px4kJ++PPVNSmqQofDaa69Nyd5SKdXH0OAdoZ3NVR9TkAHU8tva9jh1kN82WUPN5AQoW2rgluqpZWLYauS3GInIua98LXXQWmeaMPTlNS0vsl1Vm0jbKfVUkv8Uw3xOJJ84SRrKlyazNvCN2W4O8M+Qt9+YiN4x8OWXXxbDdYwxxhhjzP7wf/udAbM5sG3m3/72t8Wrr77afeZvsKFvjDHGGLNe2JNvqpGRH/HbE40xxhhj1g8b+cYYY4wxxmwZG7OFpjHGGGOMMaYOG/nGGGOMMcZsGTbyjTHGGGOM2TJs5BtjjDHGGLNl2Mg3xhhjjDFmy7CRb4wxxhhjzJZhI98YY4wxxpgt4/8DcRrxJK6AJEIAAAAASUVORK5CYII=" alt=" " />
 

Input

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAvQAAACCCAYAAAApOFzjAAAgAElEQVR4nO2dS6hm1Zm/v/rzH6ZjmYFgBlbFC86OmmA7iXcFQZAjigMvNCWKGUiTLkl3UFRKUTodTDeWIYESpbF0IIoiJTTEa+lExJQ6C96FjuggGun56fPs1O/r96yz9t5rX77b8ffAPt/59rf32uvyrrXe9a53rb1rY5OJMcYYY4wxZiX5f4uOgDHGGGOMMaY/VuiNMcYYY4xZYazQG2OMMcYYs8JYoTfGGGOMMWaFsUJvjDHGGGPMCmOF3hhjjDHGmBXGCr0xxhhjjDErjBV6Y4wxxhhjVhgr9MYYY4wxxqwwVuiNMcYYY4xZYazQG2OMMcYYs8JYoTfGGGOMMWaFsUJvjDHGGGPMCrMjFPr77ruv9reLLrqo8fdZwXM//PDD7G8333zznGPzN4jTWM/etWvXoHx94403qjCefPLJUeIzC8gr8mwI3K808kma6+SiLS597hPcmysvzncth71792blqO68McYYY2bMxopz9OjRDZLBZ8oHH3xQ/XbgwIFOYXLPnj17esdJz73wwgu3/Xb48OHqNz7nifJJkCd8rzua4sdvQ/JH8SkNg+vI03lDPuzbt29QGDHu5FtOJtpQ2Y0hk2m58r0kjfHZpEFp4rzqV109NMYYY8xsWXkL/auvvjrZVEgm559//rbfbrnllsmmwlL9j0W4lM18mbz00ku9LcgPPvhg9XnrrbdWFkvCkUX7rrvuqn4777zzKoumfhtqCW7jpptummwqYdPv99xzT5XOuuOGG26oDevGG2+cfPbZZ9O41x1NeXfyySdnz8f80sGzLrvssqJ0fvXVV1VZcwyxaBOPTcV1cumll3aSnSZOOeWUXvfdfffd1WfMc+VT2+wUcUfOzjjjjOocZad7+Xz55Zcnjz/++FQGNXOSWtqfeOKJ6nyE8uU6ZIn7yK9cPTTGGGPMjFncWGIYWAknxy2ok8S6DKnlkev7WA+7ZlG0wvL8aBHFkilr5jytztGiOpSYhjp4Vs6arNmJpkP51Sd/9u/fX8WNciac3bt3V+e+/PLLTuGksxkl+ScLeO7QvQo3PZos75pJSUG2SmaeiDvhp8+UjMZnE7+mGQRdq7oU6xdxmfeskzHGGGP+xsoq9CKnDMmdIyoYUmq6ulBEJbONdBAhJU+/RQWsr/tFV0h3HMgMcSEhPSVxrlPou1zTVaE/duzYtvKVMnzw4MHicPTsdPDXd+wb09GmMKekAwvRRXkmP5QW5bfuj4Mfnc8NEjR4Vl2I3zUgSQcNEP83xhhjzOxYaZcbTflrsaHO4aKAywzuBHJR4Ptmeicff/xxsYuLXC0OHTpUFB9cKh577LGpK43cHPifMC6++OJpfHB9eP3117e5MYwN6ZYbBHmDe0Xfhai4veBGFF2F4rGIxcfihz/84WR9fb1ykRmCFg6TZ9HVBncl0jiW+00buAvhJoU7GXGK+XzvvfdW8hPPdY3XRx99VH2STuoJILvXX3/9tmtfe+21qSsW1yK3uLLpHDKGO9BGcNkiTvrfGGOMMTNmUSOJMZDFUZbxkgV+Xay+cmsYw2UlZ50tXZBYSptVfHLc/SO1sOp8amWNVmDlQV2c47P7WOjr3FEmkzLXlBxra2vVfaUuN6QxdZFS3ijOXePRx0IfFx2nblspbWHKJU35re/REq+8b5NFlT3Pkwxxryz7MZ9K84hrCUNlxCff+7jHlYQVz3V1xYrEcHnuIhZtG2OMMWJlLfRYUbVIEGsllmc+IbUgY+3Utn9PPfVU8QJUwsRieckll1T3zYvUIlt6KD9ykH6sqqeffvoWi6sOrO+axdhIFsZy7/3331/dOzZahMmsSnz2pkJYWcXjuU8//bRTuO+///7k4MGDk5NOOqkoDqQxXQyMhVzp5nPjuMU5t/CXGYpcmUQ0KxOPdAEqVvAuaW2CuqDyJS7MUPGdhazi888/bw2HdBIvrPjw6KOPVvLEonTiyuzTF198Uf3GJ89tgwXM11xzTRXG5ZdfPnnkkUcmv/rVr6rffvOb33TaApOwWAT//PPP14ZFGnSOus113NcFLTL+9ttvJ++9997kjjvumJx77rmdwjDGGGNGZ/5jiPGJVuPo5x3/10K+Uv9jrothdrHKllibdYxpoa8jblFZR6nPeomFvsQSrTjVXdd30bDKWNsptllhm+IQZaAvQ3zoIbewOpZjSZiSfa0NmITZlyiDst6n1nHOpwvMY3yANOr/0pkn1jZwrRZLx1kD/mdRc6kVnbCOHDlSfebCSs81bXdbh+7hOYJZoKFbuBpjjDFDWVkLfROygsqHXdRtlZgDP+U777yz+h/LLFb6Uh9xLI6bysMW6/KmMlBt6xfPYeHEAjxLsEpiQR3zWdrmMLVEt20TGS3YxAkrPLMFgOUzzkwQHuXXdVtPfMKxPhP+sWPHKitsU7woB8VhFSBdyFYJemkUMw+SffKH++WDT/pldecTOb3gggum+U0YrEvQNcgT9Us++7L0U0c0q4Alv2Qtw1/+8pdqRoTrN5X3LbMGhHXCCSe0zq7EsK688srJH//4x0qu0rDS8LGuQ5c2gTUN1GGeI5jdoG0wxhhjFsmOU+jfeuutqeIc913vAtPzKD3RxQTlHiW/bfEhCg/XcaQLFlN3C5QqlKdZvTEVBTq6SYwFA4ONxGUHJUoDKAY0p5566rb7UKh0rwZLAsUKxSsNl4N7WIzbFcoAt5vf/e53/RK6pJx22mmt1yBPuNkwkEPGKBu5ZJEvGuClAzOujYMc6oCUf1xNtIBWSn908cKdB1555ZXqPQttSMHm+nTAxrkuirLCeu6557bdlwufRerIbKkbGXWY/Lv22mun5959993JN998M3ghtjHGGDOUlVfoUb7lQ49y0fflPYKOG8UkWvOAjh8lH0WmCSyOcQcQDvzDuS+10GvQgWLR9CKnvpCGsZX5OqSMS2GUwp4OVGYVH71QKvpEn3322dNndvWV7krOf77Uh77LDkHIZirjOX975InzfOYGSbKi535L0XnWWKAc6zuDNr24DRh0SXEuVZSZASCPolKMosw5BhyUW+kLwnIKdl34DPTko8/3NhikwllnnTU99+abb1af6eBFu27NaqBujDHGpKysQq+3XdJRy9qIkoGlt87lpg1tFVjngoGCjFLettVkVM6JJ/HBlSEHMwolCwhXBSl7Uui0PeKsue2226pB0+9///ttv6Hklbpu9KXuzbsM1iK5Qd1Gski1DuQTJT1uqcn/JQtotfA3Ksfp1pfp7ylY/HljrOKCch9lHcUWWe+ymBX5h5/+9KfTczwDFxnSxiJWLbZFuW9SvnMKdl34wIL3F198cfLCCy9Mf6ubgfvBD35QfZ555pnTc88880wVz3TwwmApDpyMMcaYWbOyCj1W142wE0ukj8sNCgoKS5tyJGW/xPqGYiOLZoT7ZMmkw9/JPrhj7dbSxjnnnFMpV1ddddX0HDudwP79++cSh1mAnEvG2cXlgQceqP5n1qfL2gKIO/ZAOpMUB2I5KEs9l8Gy4iK0ExQyXwryz6BHsynwzjvvVHUHBZ7/9R6Fv//7v6/KuU7pVlgxDfLPj+Ezy6G8+PWvfz352c9+Vp3nmQwKc7MlV1xxRfX55z//ufpEthi8dMl/Y4wxZlasrELfFRTxOmVF/salyqcsr1g466zr8jmuc4dgoSLXaGvMnQiDJNJXiny806MkDCzcWFqx0qKQsZ3gJ598Us2MPPTQQ0OSMRol20PWgSwx8JNyr61HJUezfkGZ4HnAYFkvbtO2sHK7UnxLOPHEE7cNDP7jP/5j8vXXX1fW+aeffnp6ni0u19bWqq0pc+AClIZF+IqzwCWM88gJz9LsDbN9GAOeffbZbWHTdhw5cmTy8MMPb1H4c/7zcW3CrBe9G2OMMRUDd8lZCnLbVrLFXLpt5STzwqQxtiaMTGq2h+yzZeGY5LYSTF8kVUq8p+SI2wVqa8RJsl2ktlXM0fZypVkx9raVpKGLDOhFVpPwcqs6JpktUHMvECs90vzWlo1p/BXH9Pr47DHRtqSzpKSMtD3msWPHZhoXY4wxpoT/P6NxwlKAW4C2+MOiKbea6KZT4rtcAm4A2iFkWUmtppo9wG0gtWI2MSSNuJBw8ExeTlQCC2xn8VKrEsbYwSTGvSSfKSdmK5gFKs3r3HVjbMcpuZYbWwQLdF0cVd/GLjes8+vr66OGGcGnvsQFju0xU1ceY4wxZlHs2lhmDdQYY46DT/1111030/cGMNDEzadtETW73eC2s0rvMDDGGLNz+c740BtjVhsUbXzeZwWzEWy92aTMcw3rM1DmObTw2hhjjFkkttAbY4wxxhizwthCb4wxxhhjzApjhd4YY4wxxpgVxgq9McYYY4wxK4wVemOMMcYYY1YYK/TGGGOMMcasMFbojTHGGGOMWWGs0BtjjDHGGLPCWKE3xhhjjDFmhbFCb4wxxhhjzAqzIxT6vXv3Tu67775t5zn35JNPLiBG26mL4zLA6+x37do1+fDDDxcdlQric/PNN48SzljpIj6U4RCIyxjpmhXI59A0XnTRRdM6x2ff/CefhpQbz6b8c+e7xInruD5tRzi/zHV6J1NXJssAMpGTu3lDHKiLls/+NLUVpeXcdk3fNpL7+vQlY/WtOQh3GfQI5emQekjd4aijT71SuzVTNnYAF1544cYHH3yQ/W3fvn3VMTaHDx+ujlL27NmzceDAgdHjMQbkX4wbYlF3kI5ZQ3nxrC75m2PMdHHN0aNHB8WHMOrkNEL6h6a9D+QBeTY0DKWRNPQJj3weKms8O5ffJXnLPTHeigfnJQeKo1kMffK+qf7njrq6Widb8Tkl9Rxon5Cvtri0hZHKtOK47CxzPSJfc7qD4lzSRnN/UztGGNJRurZ33NOnfSVduq9E9kr7oqY+cmjf2YW6NJHmLuVWd530kz76nGSntH3oynLWpI5EhV4NGZmdKmx1yludIBOuCmCosPPMeQp1KWpQlgUpTaVHXSM4ZrpUgduOtsY1Krsxnl0VilkgxQIZHTKYiGkkrD4djhreeJQ0osqzuntJV2wHCEvtRJrmtNMDwlEd1r3fFb788ssqvbt3767yg++zpmtbUFoPh5IakMiPJsWoKT5tclQqZ6ly13cwPQ/S9jQ1vCwLdf1Hl7pPGE3X0p7oOV0NOfHelFzfofZL9aqE9Lpc2xzb2LEGB31pGsgS9ybjb6SuLNRflNwf2wQ9uy3PhubPjlPoRSrofZSjPgpJF0V0Xh1QHU0NwqIYo3EfM13ITYnlRIO/9N42OejbmCv8/fv3TzuYvrNAiqfqSFRc2+5pGojUDYab8rOuwWzrGEWdYsW9qVw0dczRSk+Y6Yxcacew0yAv1tfXFx2NYoVkbJChVGZyA3XRVq/HUuiBPIkDzmVr21U3VZfS+KUD7rSNnBd1SqvKsamNSUnLr1Q3iPfXXRcNEnVHpI9Fv7SeLYvBUvFN09k2q5aSq7fqY0tIy12zummcxmZlfejxYcIfieP111+fnHHGGdX/8gG+9NJLt/iKPfjgg7P3X5pU0jTZLKjqMx6bgjDZLNDp95deemn6/2uvvTbzeKXgZ3b33XdPHnvssen3Rft+EodTTz118umnn07LVv5wuSPnQzt2um655ZaqrPpw+umnb5OBzQZlyznFsw+XXXZZFbd77rmnOn77299O7r333skdd9zRKRzSiMwSXyBON910U6MvZJq2mMbIZsO67RrKNwflRPw3qnb5/6CuU59JYwncT13bbJSr/4nD9ddfP3n88cercJSuV155ZXLxxRdvux/Zoj2hXeHazz77bHLjjTdWB7/hWxnbHL5rvUaT3+Wqo7wgD+dJru7XnZ/1GhVkSHJIWS/Tmhjq8Pnnnz/9PnQ9zNhQ76mPN9xwQ+01l1xyyZa2grpLPZ43sZ3mf+JBvOW7HuPI79ClfdIR26lc+0iYuXY2tpF1v6ftKNx6663DMiYD7TPlFmVvEVAfVRakU37utFu03bGP6wplTrnU9V1tnHzyyZMLLrhgiy5yyimnjL/mYMTBwcKos5ZNjo/IUp/YUvq6DOjZcQSWjmA1sl7UqDbNL00bL4qY19HanSvbpnIZM13yTa2zyMRwcxb6lCGWvBxra2tb3B9kEe8is3GNSRr/VIZL6Otyo5kQWZFy+R2PurxWmURrvGZ9dA/nS2deVPax3FJ3hiHtxCohK9exY8cWHZWFWOijDPEp+WnzQ26z0LfJetMsUt09Jb7Ri5xhqrPQp+dK2tWxSfucqD/k6nnqwlJXLrm+KNVNupRJV7e/tI+pc5OJ+V1Sz9rkbB4zLLkZAvVtffqxmFd97pfLZlvejF0nV9ZCnyO15mpkL2tb/K10lTL39bHwMvJmVFh3L5ZIRpOLGtXGkapG2E888UTW4pXm69iWH1nVNVPBKJgRLXAOS3SpJWysdMn6j1UGq+RGYvnYrLCTBx54YFC647Ox/MkCHI+m0ft7771X5dVJJ51Uff/222+rz2uvvbbo+dq5R7MEn3/++ZbdAUin4jRLyGvKWNYPrCtpfuugXmEta6o3sRz5nzqMJV73cI42oa38yB+uYdaB+CkfXn755UquBPnGzNJOh3STFz/84Q8XHZVitLNE0yxfnO2tmw0gHNpsrGyc4zPO3KUzb1FemyzSQFtSJ+/8Vmf5rZsl2zhumY0zwmmYHH2tlX3QDJaOjz76qGrz0nxeZmgPHn300exvcWYylovyeqNhZlLnkTHapbqZZ9qtmF/II0dOZkutvlFGkGHS0UUnwSqezjDEg/DuvPPO4vDaoAxSnYo4UBfTeDOTiIxpdqUP5OVGy6xSHXG2SbM8aduQ5t3QOrmjFPrzzjtvS8NKgVJBco1t6fQYhYCy2WUQAAgX90oxjWhqqLTwqJxXX311VaGp2C+++GLlVqFtBt99990t50488cTiLd0IG4WOgzin+UQe0pHHc32nneqgsqRuRzFvUMhxj+jCkHTRYPBbqYx0RY1ufDYVO+eq1aWC09msra1NrrvuusbrpOTk3FhSZXnj+LR3biCcU4QY/ETSgXTOLYK8HkumCJvGHYWLxlzT4zFNJc/iPvJHDTn3UEZy/4mgnJQMcr/66qsqXB0R6jd1eCixXYjnxpjapQ6ec8450wHkLEkVwHioQ08VHNrVVMaalF4OZA+arknDoZ6mCjFuaxogyBWHctAAILbHMZ5SyigbbfuXKm1pGtuQa1SdYlYi/8QXuSGPo9wgo8hqV9I2mHY5VWb6Qv9H3sUtc4kz/eCYLlHElzIf4lZHuUQD0ltvvTX9jf/rlE/cM7g+NzCL55BNxXPWIN992+22QXTdQZueuq6gO8T0qu04dOhQlScYW9oMkWl8ZGAD9XtN8Urb1rF1pFJ2jEKP4o4VLRYsBTrEb0ogMAgGHVqdYp/z9ZafrQqbgUHqf1vSUOP/T8POiA8h++STTyYPPfRQpYwhpFgf47l/+qd/mtx+++1FaSMeNDKL3K845h3piY0e+UIFjufw746KYq6iDkkXnU9X3/Y4q5CDRob4EK+hHVgE2SKN5NOxY8cmzz77bKPCRV5RT7pYHST/6UA4599Z4kOf5m1TXqshLYU4kceyfoAaXDX0KOTE46677sqGTR5FZV7ypXhy/rTTTpt2KpQ939u47bbbKmuVLEco+IBC8vzzz0+++eabLdfze5fZQc1IsV4AWdMA4cc//nH1+ac//Wl6Lc/souA3+c/zG+GNSW4QroN2FDmL65A47r///loZS+M7BPqVWA/IF/mHM0AgHsonDYhjXYv1SQd1UnLZdJSst5Ji2PQeliZ5Reb++Mc/Vv0J/O53v5v+htHg448/nsqu6CJPxIk8ow4MLQvigVL7r//6r5Xi9m//9m/V+e9///uVEvzOO+9suba0PsX+mf9BAyTq2JCBgsqSPIhygezMwse9CQ04YzpLUL/KDGY609Jk4BFNawNKjtxgVc+kfVBdoe1Gb1N+1xmX0vikBjZoik9Ox0zrWGrcIu/HZqUVenXQZBQW71hgFBTn5TKgxq3OSlgCAkLjgXKdNgxUzLrCprEmbjQEsdMpbai//vrrydlnn101Tuvr61sssPx21llnbTlH53LCCSdsa3RTEHZNs6EELIqYd3TSxEff00VSHDQi0bqTjoZnka6c5QzLbBPRyiglRIt2FM+9x62MOZebEmhIaIyefvrpynp6zTXXNJb7kIU9i4C4UudKUP1GJnCDAfIG5YbOSg19tLoTdhykEwYyqGvUjggpcswGvvrqq9X/dBh8b0JlQnmhEBInDbzefPPNaZgRypTBaykM6M4999xKAdu9e3f1P5AWZm7OPPPM6bUYAaJ1sA1d+9Of/nTbb7/4xS8mDz/8cHFYQ6A8tHD+qaeemp6nrtFBtllPKV9kIdf+RwtvHVwT22oU0nQQ2xUN9vu6BaQwUEUxRFZRElMLIgp5EwwukTvFiz5HkPaf/OQn24wGXeSJ+NF+c8iVra9i//bbb08HT7ShtH9A/DCEEVfRpT6li2IjWmCvOH/xxRe94i652Xv8JVWEOZYMlJK63JSgtlJtYZvLzSyJs1o5XYq8ZYYf0tkN0l5quIsGnBKoYwwoBTKSzsB3eX4pK6vQy3IrCwik03dRWCG6WPTNSCkITdbYiKxmCDaNHpW2K88991zVeLz//vtV46XGFCWBc4QfG1iub5sapwKguMzTj7IEBD9a3MmztMFvUqRnla60odLADgVA1sv0mVgR1NjVDdhSKyOHpk27QFn/+te/ruQBS/BOosT6TcNO/SbfkAEGR7IcacAfd0/SIeuNOicaYVnnCFOuXpotksJIWfOb5LJN3igf1WPiE9c5EG8UbqyKEWbZugy+CJ/nMEtDPGP9x/0gho8hoIvy0OQ/z3PH7phy0JbSUepZyhutwSmxYKNMUndz8eVe0lk3qydZivJDexXXU/RBlrqchVMD/tKZRikdKlvSSXqR6TijFJWNFCzzGJCoP5S5BoJY4ZlFys3SlMqTdolRGBpUo3z34corr6zqyR/+8Ifq+1VXXTX9jVnrGNeu9akO6npXRVVvltZ9sT9DfpDfRezm0xW1f7NyR+0K8i3lOK0zqq9xFkIHfUqXtQLIdhfjCkhHJD7EAb0lxoHwxngDfWRlFXpNW+ZQwxULDOVrrMUZqc9WHdGPWxCHPj54OQsZ1gmIW+/RYNLoti2MrJsm6kNceDaUdIGhlGJ8VCN1lWDMdDWhKToUADpLWZFTC988FB2hdGNhm/Xrt+t8Ckt86LsoKKmlA3KdsuqZGvjcLFlu8JQqgNHVA2UgzhDx3LgoDjlFLrsodP/1X/9VfV5xxRXTczmrp1yEuiKraqz/KGIxfK7pKh91/vOEnXO3GbNNANpM2nBmOAVtKeFTB0tcUbSwsEkZQX5Ia86Cn1vjwiyNlMbo48uAUv7vcYYnR92CWg6siyiBpQoUSkK62FtGKM0oIR8lBikGatFYVDeT1EWeUnclxW9oO0m4DIrjgBO3IcW1b32qg3KJ/Uxdf4QsIQe0P9wT2wrdQ/+NjIy5eLSUri431LO0/Pq43IxNbLdjO4/c5xaH95kJIdzS2ST6CsmH3PH0GeNJ3vXdFjvHyir0TTDalZABjfO8FopEqCBpYREHpkO7jspyFjIaC6bW41T6M888U527/PLLJ4888sgoC+3aiFOOQxXJ3AJDym5ZdxGRAqlGrs0NZywo1ybXsegvPQvqfCBLfOhjfjWBLNEI0ljHQXqJlS1dGArpupWmOqi9i+P7DOiMYxuCIkdH3MWyRv1E8VA4snriKkAaqbM8G4slFkW+d0FKG/Vf4A4j6xILHbkGBaPNJU9E/3niq/ccIIMvvPBCpeinSv1YbYLc1lDkU9kiDxlIl7SlKs8SxZ9rtKA6EpUAuXehrElplO8tCoQWzsYZ5Dqa+iUMHKV9BfFFRnPKCgNRXEVKZ5TId8ml0EwS9/Is5KeLPJFfbfmfKodtgyHBdcRBgw/SyawBcR1Sn+posu7GwaxcbGmz9B4MoH6oT5N7oMpk1saYSB+Xm5RFutykaKegtO7m+oOuYFQlvwi/ySCl2ZgUbaogkFfCG1Mv3ZEKfVx0JKvJvKezeG7dTjY0uPL9Kt2NJmchY7CA/3w8h3WWRoRzKA/yo50lNG5qDIYKZ24rLu1You8oWfGaRS7ozTGPBlkLKHGlSJ9LpzuPcp8FlK0UEqzfsjZqp6kus1uppTK1hDYNDLSriWQMZTC1oGEVBCnRJaQDU/meMyhHxrHco3zwrL/+9a9byheFiY6COl+H3JO0hSmKGWHgQiElR9fEdkPX5V5KJuX8Rz/6UaXAy6caFy+tUfne97635Z6hbYJmgORKk1OgSA8DQ9rGNrnQQvBSUMijn3S66w7KrRZez9JQhIGgZAaIfiS6I6UQR45Sf+/Ugs+ATTNJyhNkrE6eUvYe36GljVQ5bBsMCRRH4iJY14F8Ql19Ggsp5CLuiBTlFnnSy4To0/SSO9oWLWKGuDak7hkp6ge1a1MJ2gEuxnuV1lflQNmm7qb1gHZCFvau+oJ2pQK1a9I/cgY1FP/c4mbltTaxoH8ae9vyHanQC1n1aCRy24fN6plaoNHU0CNg2qu+ZGo6nUYH/KXTc1iFqNR0zFLs5wGNUOnixSZy09rpQecQr1sWfz5Aueiy2DC1Gkt5bAOllzwArE40EijAyHrbTjfzoq0TaoIyjtZGDdKR6TFdOdpAprVIG6VQlhc+tV8+jXvpInsUC22nRx2lU6czRwHhPG0GndH//M//bFsoiQKFUkK9r3Mf4Pr9+/dXsiDr6b/8y79UvylsBvppfAmbQeJvfvObbWHK7Q0rL8/XjCBlggsR8c+1dUPaBM0A5Sy6soDKDY9rmram41zXaW3yMaaLPIhbBJKPKGizdpPgObm3GUeQBQaXJbMPyEOJkky6Dx48WKWPtgV3EeoeGzMgq//4j/JenOEAACAASURBVP/YKE8pfRVF0lSi9GDIou0lrsSFOhDffJ2rT03kdrmpg0FX2wwy8UJ+5BpC201ctK026dRmG33ySoOlRRgvlwXKqum9Dxpokc9tBgBkSbqZZlkUrsKhPGVojPKP/tUkZzyfGaWmdSy92Vhh4tvwcm8ITZOnN2mWvrksfSNkSXzqrs+9ySzGa5GkbzDVGyF1tL2Njvzs8sa6PvAMvWUvV945hqYrPjve13bEtwGmz4zUpSP3xsR50FXec8Q87xpefMNiW/nm6nGXMkqP9Hl6g2cqIyrP9HqFM9YbY/WWQ9qG9M2sxOnIkSO9wlUe87mpsG37nfjrzcMlUN7kCUe8b+w2IcpG3Rt+4zUqB/IvLav0DY5d3wIJSrPIxUky2uVN1ekbXtvu1Rsp68i1XX3SW0ebPNVBvOfZxjXVp5SmN8XGa2KeNvXh3J97K26dflIqL13zsLROxrS1xSXXVykdpW35UNK8TPvctGwUvya6voVXkNZc/VKexjBjPqtshraZK63QA5lHJqSFWCdEucrZFHZp5cp1HJEmhX7R1KVx2V5pr86jVOiXKV2S0UidnC7qleyqS0NIBzMlMi8lpoviMyvqFPkSY8CY5bZ79+5KaV9fX9/2G+e6KN0RlK61tbUqPXUKfSkoRpLheShnxG3MNrSvUplLb1296VunSgaH1JfSsNV2jt0HtclTHWMoL11oqk8pXeJFGbVdn7ZrTQYblVMJfRT6LoO5EnlJB7bp82Zdxk1tz7wHjXompIOatgFfF72miV38abbhG2OMmSe4UbFLB64N+L8L3E1weWAHkj5ogWButxfcEfFDLn0pHTDVjKsQbj3L4OZl5kuTPC0TdfXJmJ2EFXpjjFkRrr766soHc2ylhAW3vJyOl+9YMTfGmNXDCr0xxhhjjDErzI7e5cYYY4wxxpidjhV6Y4wxxhhjVhgr9MYYY4wxxqwwVuiNMcYYY4xZYazQG2OMMcYYs8JYoTfGGGOMMWaFsUJvjDHGGGPMCmOF3hhjjDHGmBXGCr0xxhhjjDErzCgK/RtvvDG56KKLJvfdd98YwQ1i7969k5tvvnnb+SeffLI6/+GHHy4gVn+D5xO/rvekkN+kJ2VIGXBf17jVhbNr167i60kf8U4hjbm0G2OMMcaYrXRW6FHYUmXy888/n7z++uuTe+65Z7SI9eWzzz6b3HnnndvOHzp0aPLKK69MTj/99AXE6m/w/CeeeKLTPY899lilIKPgivPPP3/y8ssvb1F4GahQBqeddlo2HA0mCEtHVKSJ2wMPPNAaH8o+p4DH+B49erQ9YcchTrfeeuu286Tx0ksvHWWQYYwxxhizk+ms0KO0o0ymSt2FF144KCIorAwWOL766qveYRw+fDirtKPsfvrpp433k6ao8OqIijCKcfpbk4IrULgvueSSSlHtyoEDByZ33333lnMozo8//vh0xuHBBx+cfPDBB5MbbrihNhwGExsbG9VBmFKkNRi48cYbt6UzhfBJh9Ic84J7GFBdcMEF2Txsg3hwraz8xIfw0oHIImdZjDHGGGOWjV4uNyiTKICyGn/00UeTU089tXckpMA/++yz1XHSSSd1up94oOihSEalVEqkZhRyynrktddemyq88QCUZf7Hapz+dv/992+LU2oRP+OMMyoFPBeHNqWXQRTKt9IZ4/7WW29VyjVh84y6tDXx1FNPVQp+TBcWewZHOS6++OLp4Cje8/HHH1fW+Vwetg2mgIGYro33vvTSS1u+L3KWxRhjjDFm2ejtQ4+yF63NQ1wjUOAJ6/33359cdtllvcLYt2/fFqWP73Jvueuuu7YpmPyOEtuGrMF1SiQW5JzVXb78OeU2dxCfJpcXLOM8J72P2RIGFHUDkRJQ3iMaANVZ+4lHqqAz2OBcyQxEHJjce++9WwZh5DcuU1GeGLSkbkfGGGOMMeZvFCv0cofQEZUwLPYoZk3W5zY3CSlruHOMCe4bXfzWU/cZrNfRV53ZCEGc9+zZMziOXUHhlvUfy3zq4pJbMAtcR36QHspLYTEgYBZA6aRsu/r6Ew8NSIhb0wAvDkwYVDE4jNZ3Du5XOjQg6+OuZIwxxhiz0ylW6OUOUWcJrnO1QGHjaHOTePXVV6vPc889d0BytsJiXTj55JOzv+cWkOJ2E5VRrNe4mNSFP/YARKQDqDgoOuWUU6rnpnmNWxADjJxlXe4wgNsQSjTXYeGXosx5nsNsQU55TtcPaEcdBjbkU3wubjJD0ou1n/AoC2ZB6hbzGmOMMcZ81xm8bSWKWJ3bCZT4TgMK4draWmf/+SawpmN5xsrexV0DZRRFkrSlbiQMAhQWyjBKcBtcny7s1FEXrziAQvlGyY6Dopw/Pj70dTBQielAWSZ9zK4I0gN1aeJaxYmBw/XXX1+FgeU/Kt38n/rzt83QkLY4KKQMuA+rfzpwIS3GGGOMMeZvDFbo8W9mh5vcdpaibivFCIts+/rPQ6rg8l2WdZR6lM7S3VFQLlEkUUpTv/bzzjtvOpvAM5p2lRGaIYhKKcor+dbXjSRdMyALfRfiAIHyIz2Eg8tNqRU8VcSl7GsRcclCVrlvxZkUBmGksSR/jTHGGGO+ywxW6PFvZgcWbWeZWmNx9WijyX/+6quvrh0oRHKLYtPf2dqxNF4o7iCrtUAxxWpPnIdu1TmErhZ6LdKFuP4BUN5lfQd9tvnki76DEi2KZQaCvJRVXz7+SiPxiy45QxZgG2OMMcbsNAYp9FLEZUVFKcRfHsVMv6H84vPdRJP/PO4fUq6HUOIaE7nlllsqyzOuQKlCi0KJxT+3XeW86GqhJ8564ZYWofKJgsyWo6mfOjMmKNnyta8j50aUc7mJPvfaZ5781U5DcctQyipuo0k+M3vTZQtMY4wxxpjvCoMU+ptuummbSwqWehRBKekod3WLUkWT//ztt98+yr7jDArSN8jWDTRQOPUSKNKHRTtHW7oiqcLMgGCRYPFm9kEKdDpAoAxRpNtcXnILoXMuNxx6kzCfTbvWMOsT3zrMS7Xa3mLrBbPGGGOM+a7SW6HHLQKlN6fwPfroo9MFk9CmkMt/nhdMvfjii9W5d999t3qGrLpD0XaIbWg/dSmUpA8FVTMOWOv10qUuPv+EkfrQl1qa41aZoqvLTQp5ERfELguUtwY/5Dn5rR1vmu7RAEIv4DLGGGOM+a7QS6FHycIHvU4hlPL8xRdftIYV/efffvvtySeffFJ9x+UCq/G///u/T98kOyY5ZZp0YQ1O04V1GGsyiuOhQ4cq9xBtqVjizy2/+0ju5Uw5FD5WdFmf2S5zyKJYBghd3yYr5MvOLjQMaEoXGpci6z0HZcHsSHwPgDHGGGOM2UpnhR4FXEptG7jdtC0cxW1l9+7d1f9Y9q+44opKScSH/fnnn6+U2JKtLHO73DSRugKhzOOCkkuXlHeIv+v/Wbl68Exe8ISSSxxwgeFZ5H9uMBUHDgw+UmUbCz6LTZlhSN8mm+YfsyYphEkYDBz0LJT6dPtN4pzOhvB7V8VcfvykVYtlc5A/ikfcV98YY4wx5jvBRgcOHDiwsalg1f6+b98+NMQtx+HDh1vDPXbsWBU2n5E9e/ZsHDlypPX+o0ePVs9O48L5eE2MV1M6IsSL6zeV2Nprcr9xH0dJ2F3yCtK05I74bNKa5k+E56a/c0/Mvza4vik+aX5HWUnTrd/S53MOmTDGGGOMMf9HsUKPItWmoAoU3JxC1gUUeZ5JWOvr643X8pzSZ0kZnjUopV0U9CaFe9YQzzT/Sst6CJQtir7kpWRgY4XeGGOMMWYru/gz40mAXuACw24n11xzTbWbztlnn73oKBljjDHGGLN0LK1CD+x0873vfW+UbSuNMcYYY4zZiSy1Qm+MMcYYY4xpZtCLpYwxxhhjjDGLxQq9McYYY4wxK4wVemOMMcYYY1YYK/TGGGOMMcasMFbojTHGGGOMWWGs0BtjjDHGGLPCWKE3xhhjjDFmhbFCb4wxxhhjzApjhd4YY4wxxpgVxgq9McYYY4wxK8yOUOj37t07ue+++7ad59yTTz65gBht5+abb66ODz/8cCHP57m7du2avPHGGwt5fg7yY4z4UM7IwBhcdNFF1TEE8pm0LSvUCfJrUbIIPDtXZyWnXeptXZmNUZamH33KcUxyzyVOfeRhrHaqLYy+8so9y9SuryJjlTEQTl1fS1mV1gm104TVdDT1NaqHubZ2TLrWda7lnqGQx+RR3bP7ppv7lrkPr2VjB3DhhRdufPDBB9nf9u3bVx1jc/To0Y0DBw4UX08ciOeiSPNhz549GxR/3TEPxnoWYVAewGdTuppkARnimjpZ6hKfkjCIy+HDhwc9qw/IIeXfhTp5URrq8rsufcrr9He+l9TXWOe5XuXPed1PnBeRvyWMJWvLTJ+63dYupYfKPQUZSGVcctpHJrhP7T2fTXGqK9MYRg5kV+1Xl75FYS+rrEeIY9e2Z16ovWjrQ9r6LcLI9fWq86VlW9IWEuemNiSX313TRvi5ehn73D79CXGrC1t1rC2vdH/db0N0jEXrbH3YcQq9Gu200Y1CkwpAXSeiytIk+KWVE+Ho2kiPBRVu2QSzrVMszecxlWLyqCQufRrZJqW3VKk7duxYVZZDlEDFgzDGkMdSBRyksKT1jfv1qf85ooKTPiMqxFLoOXRdU0O/KHJt0qLahLFoax/rjnm0R+RvVPh5Zt/85r62OLfVhba6HgemXZWQeG/KogeNabvK92UafEh/oIxL2rK2cq77rUtbqetL6lKbTA3Na8JPZT+2rbHNju15U5/dVg9L6pviVtfOl+pnqX6Y003SNPYdJMya5YxVR3IW+pwC0JU+SkGpUpgK0azIVcZFM5Z1koo3VsdQOujJKeslSo3ksU8De+TIkeo+Prl3bW1tY319vVf+RcvKGPnXtZPS7ECdghfrW1uZqN5LmYnXEq9lUZbVJhCfXJpyg5x5Kb2zZJk6vZI6mpMXyqW0HNrqQmw7SpW1GKem2Ys6S2epEWIW6NmazU7zl+911tl5x7NLO1hXzjmlL6anTjcYMgBos9CnhpHY/pfSptCn9bxpFqYkTYpradxyz+pSpmke5uRvmQagTaysDz0+TvIhe/311ydnnHFG9b98qS+99NItPlAPPvjgKD5bbbz22muTTeGYbAolEjk9NoV4sikoW8699NJL0/9nAf5ll112WRUnfV+GNQW33HJLlT+xzGJ5pkcOle0NN9yw5Xtfbrrppmk+deX000/fUq6bDUQlA/HcY4891itsfCDvvPPO6rjyyiur9P7hD3+YPP/885Nrrrlm8tVXXxWHRR4hg+eff371/Z577pkcOnRorv63p5566uSJJ56Y5hOfxOnWW2+tZIDfJKOvvvrq5JJLLsmmQ/X+qaeeqs5dcMEF1XfJDOm69957p9/JR/mjznvtAHJFOsnvOohb2l6QJ6tCXb3t6vM7K5CTtP1N6+z111+fvff++++fSZwo47TM034jysynn35aG3/a+difpEff9mcIerbamxzIQmk5zBL1I0NJy4/0UIa0sbR9abkAbXsdjz/+eKP//GeffTb54osvsvfSjiLzyO/dd9+9pTzw5a/zz+/SPvKMTWV3i6/6XXfdNXnggQe2Xcs1L7/88lQW6/od2nL6zz5ozQD3DynTdE0e8V6F9Vgrq9BTSSSgm6PHqQJFowcUJpWBAub4+OOPZ6Y4p6DgUYGaOi6EGYV2lotVTj755Gl+AHG68cYbZ/a8EsgTFBXiJoWOjuiVV17Z1tjRwdFY5KARVGdH+VLWfRUF7qMBqmvgFlmRUUTef//9ahAkTjrppErmOf+nP/2pKBzkjDqgzkWgbDKYKZXDWQ0IP/roo+qTzobGE2j4c50752OHSNmnyhrKfRxURYWH+mnGJadE1p1fhHLJ4I7npnV71oPZaKhA+ZIRgwFnCu3P559/Xv2/yAXr33VyfcDQTRfoe/vIfTroSw/6AdrMnLzQjjYZEWRY0UFfSzuaax9lLJHCHJ8hxVkbHZBXOWX64osv3pIHKO5pvhI2gyLa6655zrO5r08bT/+qsqatoK7G8qePiQajZVXuV1ahz6GV0zqoDEAjGgujy6pvCraPEoOihBDUPYcKTgVqqnB10AmpI9KAJUcUaqUBJSensGplfptlfAg8h5kTKjtWBVVY4okVoUsHG9NGZSQvcwo56ZZFN2chpHyI03nnnVd9zw0qhlro0oaBQVWpVeSqq66arK+vD4oDaWRgF2cg4q4E/CZlp02RwPoytDGjIddzKAsaUFBdIM+JC9b5poYZWWEgyPV8Kk2yTEXLFfW4tJGP9Wso6gB1MOuQtkVS4vrw7rvvVnGNMzWcWzWFsMkKqd3Kmq5RenPnkTGUBFC9ph3EoNBkPU6RstJlwB8NT3Hmrq4+a2DLQL6uDc5ZV+NgoY8xAvlBjpCdMUjLC+KM2VAFeZZyL0OTDtqSIbNKyM2jjz5a1E9TXrGPkoV+7/FdydLyVVuistczyJsmy38XaEcZOMgwwicGMNKlZyDn/EYZk9Ycsa5xL+22DI7SPzSDwHkMMKWyIj0rGjC7QJxjeaNPNM2e9Z3NnzU7SqFHKYtWORQ1BD11f2ib/o5QuRmF9pkqRjBOO+20becRPqzUXaeEtEXTt99+O3nvvfcmd9xxx+Tcc88tuhclEiFM3UPUucQpuVm5AfH8mGamIAWVmEqDwtMFOg7CIdzYeeqg7JCDnIVQCu1Y060panRzsw5pPOuUzbPPPnvy3HPPbWkM6cRoyHfv3t2qkKgzTa1DyHVMNw0hcVPH0CTraYNdNy2cGwjvPe5aQuOPEqKZs1gfSxRc6gIyq4YVGabBpbw5sOxHayfpLYF0U79uv/32yYsvvjg9/8gjj0xOPPHETi5OkNY3Bh7qHHWccsopncIU5O8LL7xQ5f+vfvWr6hxKzTnnnLNlRmdW5IwAqeU7VTylsKQy1mSFBMq06RrVH31HFpDnt956q6r/zAiOQeoi0tc1CtmMyhqfsa9ATupmJ2nvUKhS1460n0POSgwByPRtt91W/Y8VNSqeV199da8BPG1LjAuKXpxF66t4waLlvivkKfJZEje55yGzUeZRbqVMl9QD+oWxZiIJK1VgKV/aWD0DmaE9Rw7bnkvboBkzQL6kf0TUdlI/ogzG9oT+iucSHgf1MzfozrU5gvt3CjtGoadgEfgoTExr0igOFWxN8UOdUORGzwgYirQUG76jzOt8F4s4lQDL5m9/+9vKlxqFg0p+wgkntKZPI9xF76saO3PcPGKHxsH3aMWhU4v5lM52kCf8zn19LKoaBHShzdJLPGQtm9XA6Omnn64+6zp8UF53GbxGV5Yu08N108K5gRJxIW5M99L4a2ZGdYT/1ZHpe1q2yEFU5gGFjY6HjhCrEWUk1504G9QEcfjxj39c1S8UrnfeeWf62zPPPFMp3rg7RVD0S2WP6xiIcQydAaC9IU7kJ4MixZUBIDM6X3/99fRaFDbybGyrPfldp1hQPpRv6tdNeZfI2FhxxcgzqwH7UFRvUM75H/mSoouMzCvev/zlL6t29+/+7u8m33zzzZaZLdbq/OQnP9lyfVd5UrutmbghdJF7lPw+Lq2pu0WXeNNHp326jC4M/LoMjqKhhP4EuD9VWtXWx/KIrl70tXFWsKkt7DLQiv0g8dNMRq7NjhAfkM5Em9Bk8ea3+HtsTzTTFo24fdaSpH16qp9RFqvASiv0shDJXzZWRASL8yqYdNq2j3KLMKBEUbip9TFn+Y5WYvn5QpMlqg4qARYXlA2B0pFbNBiR8sS9ckFaFLI+cGiBpqwPqcVJI/M4zRUVUxoD8qTP1HkdaUOuitxmMY6WSikycVGPBiwKL20sukAnxTMOHjy4RRZSlNfLRGzAZTGl3JAD5UlsdPmk/Okk044wLvQmT7HEAkpQ2jjXLa5NQRm47rrrqrqNYoO7k6AtwWCQokFDCZQbdZC6yP9tHV8TKF379++v8pS4XXvttdPfOB/jyowDg+Pvf//7vZ7VFeo2VmSUAy1aBhkl2pQarS/KXUfYXZS0KAuxfktBWhZoH6gTlBPyN8+2mmejED/88MNbZv0km2nd6SpPKMTaFKJPmxfpIvf//d//3WsmIOdyU0q6KDZC2xQH820DomgoUX9Cu5cqrdS11Pc9zlZrwJjOjqSDj7r1ddKbZIWPBjb1fXIf5lCbnRs8UKeJO0hnoh+Pg5N05q+LyzN5zAYopeRmb3OLz0nTGDrGrFlZhZ6CR2g0tQhpRYqVC+IUVt+FWQiMrCklRD9f0dX6JKtvbLxQ7FA6qNx1UJlQnpZREKk0mmKWNTXtwOsaY+3eM2TaNkfakGtKnYZOftU51w25C3F9naUhZzWgEezScWMZ+4d/+IeqTJmhWSVolCkz0ky91VSpLGDKi3RApToe8zUubpSLFmWUs1TxP/WPae82yFMs8FgAKWeUHKhTbCB1h6pDu1yovEkPaUax7wPP5JDCfMUVV0x/Swcw1C+el84uzAItvlb7qjpK+Wtavc3/VAOf3HUKt49BJtbvvrtojAF5xFoUKTvym5dCxszyPBV6GUqQZVxshOpW6tbZRZ5Iq9Y3gdrUvptBdJF7DB6LWIDdhHSVEnIWekAHiQNlrmuahUW+clb5dPBBOeX0CXQdyoxyj3WIvJUBKxqpaLMh+sgD7TN9V2pwiQp0zv2360wVaegiX8obDSRov6I3gfqZnJfAsrGyCn2TBVIdcOxoURrGWiSCIJcqyYw+NSIFLR7pghrWs846a3ruzTffrD61mDMHFWVMZV7CPcZ0OJUmDorIU6wX6Wg85/uqRTPzQG4oNDI0VNqOK43nrDsOlPnLL7988s///M9TZb5pQfSyQaNMmaW+tXEWK13rUDdzFTsA6rX+pzOPlio6FPxWkavSekA+42YQFUbVPxQE8ptr5HYQ/eybyO1yQV4MXVz17LPPVkpC7CQZwGj2Rm4HucWOmh4fq5OiE6Q8ot82ba7cqErSStutRdp1SHkpdV8ova7ENTO6BHaZipd1U4oZshoHmTJuSCGdtxEGOcZAFAcSWu+B4i75aZKnFNKsOh+hbPtsBhFpk3vSQzy7rnmBIS43baQGtqa1PTkLvVD/p5nuJlSfYj1P40FZddkBj+ei16hOx/UbDBQom1iH6S/nZVxUX1My6GfGR2v55EJIPHGPSvsg0tQkt9EDZFHbg6+sQt8EnadGt0DBaoQ5T+hIUADT52r1dqky9oMf/KD6PPPMM6fnsCIyPTqvNMW41u172wUqXKqsd5n5mDcaQKpzklVtHkiZ/8///M8tneMvfvGLucVhbGQNiXLVZfcfoH7FdQR0vLHBpYFGme9i7dQ2oNFvGEVhbW2t+p8BAgoOiwi5hji3KQ1YgOp2fhDpzjeliiJbl8a4kq/6TrzU2f/85z/fdi+Dahg6OFZZ0hGmCgrtE3Fo8tuNMGiOBpA6UBaId5uyTttfsjC0dGFcuj1qm2zJlzkuaERGKV8pN6RD7R5lEjcLmNeAXb7osY9BJpEl4oA7Tps8RbiHNLcZOtIBUmk5NMk9/5Me6u3vf//7ovAiQ1xu2hii0GqgQV1C7pB90tg2OOKaOAAA+t5YJ3FZRGEttYZTrl10D8Kd1yAV2SN/qEtt7l0Ya9JZCW2dHHcMIr1tBonoAdLFFXNMdqRCH3211TnO23+cyla3kw0VQS9WKhlFalrxz3/+c/XJQjwa23nuhSp/Nxi6YwSj19w2a5RT9L1Lr1kma/S8ZgiARWt//etfq06UMtdx7Nixpd5TvcRHNMa/y+4/QD3XDlQcaccrKwkdWikoNAyUsVYqDPnP07BjQSVddAKffPJJNWvW5Hogn9G2ckp3viltr7hPijkKF8aMhx56qPr+9ttvV37FyEnOXYj84zmlynaKlFVNkec6bPIKhYMyaGuv+B1LX6lMszaoaYEx7QlpU7yG+tDLRzhCR9+kBMmXObYX8pHXDImUe1lQ9f4UiK4VQuWdI/o7kzelaLYA/3hQv4TcEAfi2yZPkVKXyHSAVLobVZPco6T97Gc/q3aCK3G1S0njnSv3MWgzjKUuNxpoxJn3Nv1BbRZoIIlsUMeoG6o7GKhKt0Yee2ZvLGRYQPa0M09048z1R7RLufpLvVabj04yz/5+CDtSoRcSVgpViuI8pkJkrWpq6DW9EyttXcdE5Tty5EhlJYmVqMl/fhaoIxqqRJIvOeUtHrLSlSp384aGoMuCxtwe0SVTnEwd03HllC7eFDtr0gVK6SBLuwylaVMnNOtGX2502mdc9Yjn4ossV5zShXgo52yJx0BBcUeBYcEsrjgoCsghbk+EH9e15NBWsV1pUxQFOx6xnSZxZQs/7YAEuB8wQCHecYFvpM3/tgkpqznLlRZAa6s+rsHynFsoB3X+tU3QhurFOikodXpLp0h96BWPLtuajgH+88itNlkgPrSttClaW4Ey0ceAIZc27u+yWQDX8VwWFGqPcPocXFv0e4k8ib4KEPeVyECT3FPmDD4U73mS2+WmDjZbSOuClGXa1dhHpi43e4+vj2sbKDPQia7GtJPKX+qjjHNt7rnR40GukbFuxT5BPvTzgJkFDdRlWIiyF3coTPfqhzgbloO0lLYNcfCwsA1INlaYzYympKpjU+Czv0U2hbk6t5nZReFzPeGUQrh1WcpvBw4cqH1OFw4ePFg9Z1PRKL5ns+Pb8hzlhY62PCHupfk2BOLCszYbsyrObVDuaRmpHHSU5i/Pi/e1HTF+xDf+lqYplU/dM488Tekq12PRNX/jQV5FyE/O59IhGYpEmciVRVeoe7t379748ssvN/bv3198X6lcjwVtBc8jvjEPlX9jojDryiW9RvnAubSOpnW4ru3sErdY7mn7V1cmpKOp/UjrfVs8+T0Nj2en7YDSX5rutniORZ08tdHU/82C9fX1aT/S1k+WtAlRbuvKdmNpHQAAAbJJREFUhTSmZdDWN5Xmofo5xSPGN4YZw+P/NPzS9lbyqHrSlD+Kl+CetjZObU/U4ZqOpv6qbzuWK8NYzkpTWvbqP8foR8ZmpRV6QGBVcWOm12U250s7VAlzl7jUMWaDRlgoE10gzbk8ySnEi4Z8KlW8msqTcObZieiZuUa0Lu8XAXK9iIHEGDQp8rlBfHrvWKDYrK2tVZ9Hjhwpvm/egzgUGwYcPHMe8pYaDoYy6wFQW/tX2nGX9BXqqyJN+dXFiDIvhb6vPHF9lwHAUOgfeR7xbaNrH18nL136GvKjSzugfq5poJx+n1c7kz4HOWyTxWWwJau84oCoTRfqopssgl382W63N8sMfrtMNy7r64eN2engt8s0/49+9KPG9wEsGqaX8YHGRULbcBrTl1WRJ9zu5Es/j+1ajVkGrNCvEDRS+C+ygh+FHl+2VduP3BhjjDHGjIsVemOMMcYYY1aYHb3LjTHGGGOMMTsdK/TGGGOMMcasMFbojTHGGGOMWWGs0BtjjDHGGLPCWKE3xhhjjDFmhbFCb4wxxhhjzApjhd4YY4wxxpgVxgq9McYYY4wxK8z/AhSCr1JshzRyAAAAAElFTkSuQmCC" alt=" " />

Output

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApMAAAAmCAYAAACYjhASAAAT7ElEQVR4nO2dOcxvwxvHz/3XiEpCwbVFZw0qu47IFSpLQUhISISOIAgJjQQFIRSWQggFlZ1KFEQndo1Qkeiv93Py/7557nNn5szMOb/ldZ9Pct7lt8yZ5dnmmTnn7Du4wxAEQRAEQRAEHfxv0xUIgiAIgiAI9i4RTAZBEARBEATdRDAZBEEQBEEQdBPBZBAEQRAEQdBNBJNBEARBEARBNxFMBkEQBEEQBN1EMBkEQRAEQRB0E8FkEARBEARB0E0Ek0EQBEEQBEE31cHko48+mn3v0ksvLb6/Sjjvvn37Fi9z//79i5bZCuffVJ+meP311xepzxdffDGO1w8//DC7rFWMPe2k75eo3xJQD9pIv/VCP9166627/1Nez1hSF1tOD7nv83qLzjFOKTnS+M3pr7lozKjLJphqe2/9+N6m7eJ/gSX7MKc3jBV+uVYP+CzlIBelo1Se7PEqbaf0vgXaNtduwZSN6vWPm7ZXi3Gwgs8//5xHLo6/Pd9///343iOPPFJTVJKTTjrp4C233NL93ddee6373B6155JLLlmszFZoD+0S9A11yh2pcVka+mOJc1GOlZVSu2wfpFh67FWfqfOuE/qKOiGXc8rwfd5TnmRgTp8jy6n+5bWpOnFetQM5lM3gdZky3t+k7opK03oI9EFJH2r1Xv2R609el+60yoLt623H25ptQf4Upmw7R8k30saUPrbaDcop2Xbem9Ir39+SlZa28X2vB94Xtoyp+pp+0N/+qO0rb0f9e1NjVWKuXd0GqqwCHZXrJAkzn+kNNFKOpEYJNIBTR0twoEG1zmrdbJuxzilh7sgZHfp1qT5dxdjzWcpF9rYhINHEZq4seiNYE7h5UjJAOQowS9+TjUg5ErXPB0kq19dTDsv2iR3jKae4JBqf1mPVskVfT51DfdajkzmdmjPhWYLUeGyDHgv6mkPBfI2cTslzyS+36IH0bY7cLuG30G0bVNkJpM6RsiE52asJEmuTErlgsnZSpiRRKpBN2dSaycQ2URx9NSo1ewJviGoEWB1oSTk3ylpCeKlfbcTvFdxnCNfBNmXFxBIZwKWD86XH3s/wbfZgU9iZfm3/5ZyCDyZTnynpbkpv5bynoNzSOb0DKdkRO3GlPzis7dgW/dmk7PgsUk2gYJ1hafKosSmVs65gXsiZa+xT/oTXUjK4zgC4J6ub04XSGJYmObmxmZuZVNsUE7RO5EUpmExNfErZ55p4RDaktm7+XC1jmurDlE1dt/4sRVUvpIRCDsIOvJS1NDipjk8p/1QgwPs1nV4TUEj5VAcbVFrFXDXeuG3DjEQKZB1SafkiNSY+U6LMby9Ljj3YevugchNOB1LZpdIyS4m5mcmcwa51FjbTa52Fvu+XrlK6ZgMY6Wcq0PEBtGb+q1zurAnU1pllSAWTXl96g+6a5c5Nkwsm7WubaEdPFjgXEPnxs0FXyj5OZatrJhwlmeH79K+3ucrC5iYmnlIwKdvsJz0pfGKoxi9N4e1o65aalMxpNcwiH7vXmLwAhw2vbDy1G1/5+8EHHxw+/PDD4aOPPtrdnMv/O2UOP/300/g/G19XgTbZ33zzzdlNw7XQtiuvvHKs92mnnTa+RjsuvvjicSMxr/HezuAeUv7Sm4wpz9aBzbyvvPLKRjfm0s+//PLL8NBDD42/d5R4rOMDDzww/rYH/bNjSIaLLrrosHIuvPDC4dNPP939n+8zdr11WmrstWGc+qve1POmm27a7Xfe2zECw+mnn161CX0JKJ86qM90Po3DqvQqBfpx+eWXDx9//PFh/fzrr78e8n9PvSj/5ZdfHi677LJxbDmQIw/jI1mTfu4Y4kNk8JRTThl2DPPu/4K/6btV4XVB5069TltXhfSBvvnss8+q9WFbLjY70pBP9cecCx2xFchByg5PgZ1LyaxsoC5i8fLCOW+//fZd35XCl7cTVA0vvfRS8rPYPs5FP/C3PceNN944PPHEE+Nr+AD8jof6YSPUB/QzOmH7ldfwQ4899lhXn+tCHOvXavE29OGHHz7Mf9Fu/b+pC/lamQwm6XAZYow8DSOApBMRHoyjBETChJDwf09HT4FQcX7VSQGsDWpwKFNIka+44orRQVtoB8JuQYjteUqK04MtD2VAwDgPCpMKllqususB5aKf5fwQetWR/mpRQNs2vkNw8uqrrx7WBjtp0WGvnltq7HVFOdigQ/hgxgYyNvDshXbmxovXGXNbLwyhDDnjQdC0DiND36MfN9xwwzjmOUcj54BhzkFwozb8+OOPu4ZU8kWfvvjii6MRvf/++4v1YvLHWCt4ygWx1PnUU0/ta/waKV09i77kgg4/sdUY4fgZDxtkp9D36M/U1a66etueyweq9tiU02P8rQ0BO/nbprtieOzkh4MJEvrWCwmI3PetHOiKfus7GFv1lybadtwV9NC3Vud+++230T8uATKMbmN3gL+x97RL58A+yzekzou/sT6HGAadkN9ARvAjnEu2HWplhfPie3onqH68vS31ry3Vt6umGEzS6co+YOQZUM0UvJHRbUP4/cYbbyQNvIxNKsNhlZ+Dc3kom4zoErN7hEkD5RWHA4MppenNRP7555/Dc889N5bP97/55pvh/fffn/zebbfdNgo/pJy4smlLBjgeFMX2MwJuQcnJVrVAH1Amhw/QODAgGhcdCvSXHHtkS9mqlKPmfYynxj4X+KXkpuZQ+b5czkcb/eQGbIBFH9D/mr3agNs6CR04AY/XN5/Bom0YzCUM2e+//z7KM+NLXTiUBbGk2u2RIT/xxBNH5ygZob4+CGWFhM+tAk1IUofG1dvIVNADpSAdvE74Y2piSz8oUKBO9hYnyIsN6i2Uy3s+Q2UDVQ5WLLAPtbKCDWS8vPxjH7GZrZC0sDaEOmsVZW5WmjopoPevbRvoATqAvk3VTytuHNgcJoKpjH7usImiJYMd5NCWp7+tbn/yySfjb5ISU2hlBX8j24iMeHlHRpAZbJPG2vsG2S7FK1P238s3Qfd/mWIwabOOWsbkbwYWYyRDgnFBODFaCDKQkvb47J6NxK3yc3Au7wg4R2u2M+dQrDAhSCVjzuyxNROJwbzggguGs846a7jjjjvGAJGlvCkQfgLZ3mXgpbCKwljbJU2cIoGMzVAw+yNIsp/xoICU02OIVzX2OZlURie3dA8luak5VK76GoNe20ZbbxuEWSehI5Wt9frmAzvaVpL5loyP2knmkbpgS3BgCmjUfoJE6uUzHyBHwGdUL31f7ed12xf8ffzxx1fVsZXUZMg6Z2yaz5xbh12aFK1i2VnBO32GTCPb2Oovv/wyua1gVeCgf/7559EWYuMUPPL7nHPOGZ5//vlZ5WOHQEuhcyBofOaZZ0ZdwN7xPyDDBBU1iYEp/BIn9rEGv8WE+jG26ACyyUS/JVOsyYaCJrv65CdEXjftpInz2iXa0jgoVqhBOk+bqB92Ah2yE2kPwZySUrRD29lywa9sp973voFx99toauy7JbVKUJrU7yW6n4CjQALDbykZ75YgojYD5TMsCHJNhqMGKWPrzBajc/XVVw+PP/74KFDHHXfcODv666+/hvPPPz/7Pd0sHYFd4iarc7CBEkvSNhtBW7ziUF+raD4ool3KYMxZxrGscuwxRBjGVe5xE+rrpbPLq0LBTq1eIBsEWMiExoe/5RBBGTYZdLCze1Y7bBaOQMRmxlUXsg58R3VcejvKFLQVh0E7qbOgTsp2l+BzqWBaZS+REcNGo49keAjw1xlMPvXUU8Ndd901vPvuu8Pff/892kb46quvxt9+wk1777vvvqqytZ8aG6MAZ44dxZ6ROPFB2QsvvDAce+yxwzHHHLP72rXXXtu1zJ9a5q7BL4X6vYMkcxRYA1tLStj9ktRJySKw58Hv+72OdvWM79my6D8f+GrlL4UNVm2grZVPbLzsAOfFF6W2M2glS/2CffBbq3Q9SG8gp33etTAGPvhN+VLquRfpCiaZzSq4IEBooTST8PhNsyl8hgXhYTai7yG0PdkJhNFeBNHCPffcMxobOwPC8Z155pm7xtMjo7fKCwV6IT1vZ1TsQ/OKVwrifEZpKVY19oDsUecgTa3T2///fZfKdGirDH9rRcJnZzhkZG2AbZ0GDorxpfz95mlRZKIJkrBRNctgS0IdyIZrAiKd0AWLqUmWh88R3KU+p3JbAiT6xmZoVSccITZJ+8bWgbb9AG0hABPUBZt5xhlnHPKd8847bzhw4EBV+QRP6jcmrPQ38tab6WU1CZv11ltvjbJ69tlnj69jw1lxsnVFxrnQcFtorYvPTApsvfpPF8eV7HhqNSC1L5D4IZe5095rBdq6AFL4LUOUxWflO6kvWUivQ341ge0jjFtudWYK7fNukS/t4VYQa7O6OrBfvVvrNklVMKkZgZYx5+xDap0ptgZXSk0DdZXwl2YQmtHaAZXw2qXeGjCYODlrKIHXEPAcGNclA0m1Z4kLc/yMij5Ggf1Y5i52sBmlVdIz9rr6MbXUYDOfe4HUfsmWPZO1Ms7yVOqzqT1BOBfGJbX3l2BdS0/+8LpgM+XapK8y9D5g4NEljLw28aeQMV9q7xvZFPrZXoREVoZz6ILFKZBF2lbKhqudpQwnzkgrR+ofq39aCuUzrJ6sC4IwzsvyMKs0NiNKPQnQ/GT7qquuqgp2GcdURmeO7eHc6BRZVGvrtDRv60q2tec8vcvcU1AX3x8l/faZSWGvnq65OI76o9N2ZcDXg7HKZSZTaCKGvPj9urxGFtbaC+q71ArVFOg1trTGz1InxU7aQpiyi9oTX5Inu/96W5i8AEcbVu2eSWYeuWXubUHOxxrmUqSfSjdbga01ut999934+9xzz919TYK2zkyJjNISm35TV8WiwC1Z5nXSOvZa0kkd2iezF0jtl/TOQaT2TNYaYCaVjL81oBjVmo34/jm5qSWw0oSTiQHZP50Lx+F1Ez3DPpXqQxkw1+noQhyCSJ+tZTy0ZFhDbTYcuU7dIkqTItCY5jK00gebGFhXJuTtt98es5AKEgnOvv322+H6668f/ybY5DfL235SnkITgqmg006g6Osa6D+45pprdl/74IMPdq8JYEvTnO0HvcvcNczJOCvIVbuQtalrB9AFfCWySUAp+8DkxvYPWejULX1ytK4OrmNrksAeYUvtHTdy0G4/JtTV6jFlcJRsl26TpJXhbbkYrOoCnFTDepe5N0nLht9elOI/+eSTd1/TJmC/hLNKZJjmXs2Kg7FLk3Z/op1V+43X23ZvrHWM/X8Ve2GL9pLKJmi8WzLgNruRWgIrOQPOq3vDSe68fZK+leqEg8Lx9U6IdGGCsiYpx43uMLGhjlN7JXkfW1qb3SLbQ8Bs26gsh83SaE+k3T4AOHtsOPUHyvE6MhVcan+bAq5a/IVx2i9JZvLNN98c9yI++eSTw5133jlmBUvj2LKv3U6gdLeMKbTX8IQTThh/E+TSp5I5Aiz69+mnn26+Ep0yfL0Zw1Ws4kxNmvwyt4Jc6oe+ImtTe93RO2WbmeBJtvie1+naK8DtnsltQok25EOTeK3cpnSd+ueSSdgzvqOgcBu3utXQfQFOCt17MgcCldoflbo10NLpW5aadEuBFPZKZH+kblOUQ/eo1MUBCMg777wzOs11Xgww5+a1FuqsJcXSAXapZJvujTU19rn75uWWiPc6vUtpuvmvHJPdg4TjWHLZuATnRcdwXGTylM3UMj9BA7JIXUuTGvS613Ar+53Kmqge7LkDPqN7g6aCVxwJDqXFPqgPSvqtIEzjhB4rE4KzV90ZM/SjdX8x36feusl0LWRVuPhGt0vT5OLoo48eAzXqy2ScVR7sZmkSngrIauAcNRkvAiGyqAS8BIsEudrKQP0ZYwJe+jS3H34VpK7mLkEA71eX7MUwuZUMZIiJh+6ykNMn+oJzSB416QPkWnKvrFoJ9Jb2pO5h7W11i2+eCz5d8Yv2WlrZk46pjjaonLprAt+h7JrJLX2sh8UwNlsTfB6sxD4KSo9H4/FA9lFp/pF7cxkmHmPnH5Jec0y1LUXLM57hjz/+OPjss8+O9dPjGFseo5V6bJ5tw9Sj0FofE9WLnp9e+4xm8I81849mrH3s3VJjP/VYtd5HGC7JlB5M4dvQWp6etTslwxoT/9i61nEqyblsjH88GnXzn7fntu1vkdda7GNXc/ppPyOZSz2LV/3dqhMeL9c6vz+fzlMjE3qM7lz8M9n1v3+c7L333ttc9lx98VCWdChVLv3x3nvvTZZTa5e9bcud05dd8hkt8q62ph4XmCvPf670yF1/SB4Z71L/pGz1lG+Wb2+xQzl963kcpkiVqXG2bbJjr0dCbvvjS8XsYDJlqJcwNuskpYgW/+zgFtRHLcGofz6ppfW5yqumtX052diU0nDekoFgLDb9jPS5+uTlqaY91hlsw3Nic0GkjG+pjuvSl9xzlHuZMynUJE9M2WX/LOMcSwWTUzAhZ1y//vrrgwcOHBj/r2XpiUIJgkjZZOpZojUYYQxzfqfFH6X0poSCyNw5vD7xuSXlPgfn8Ho+1Q9zAsClsM8Tb5kkIld7JZCEffzw2cpgObgVxt133920HyoIguBIhmVTllVZcmV5dpu2zVj0jOfrrrtuvPepbh8UBEcaEUyuGK5GZE9NdHMQBEE9BJT//PPP1gdo7Ps86qijIlkQHNFEMLki9IxyC49VXOcm7SAIgiAIglUTwWQQBEEQBEHQzaK3BgqCIAiCIAiOLCKYDIIgCIIgCLqJYDIIgiAIgiDoJoLJIAiCIAiCoJsIJoMgCIIgCIJuIpgMgiAIgiAIuolgMgiCIAiCIOjmX2DYdBYAfYDfAAAAAElFTkSuQmCC" alt=" " />
 

Sample Input

9 10 2
1 2 1
1 4 1
3 4 1
2 3 1
3 7 1
7 8 2
7 9 2
1 5 3
1 6 4
5 6 1
1 9
5 7 

Sample Output

5
6
 

Data Constraint

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAo0AAAGeCAYAAADxBzvlAAAgAElEQVR4nO3de4hUZ4L+8dedMGQXo23IuNEZvA8uBNrbauaPJO2V/YFBWgzCqCG2RMYwmjFtMgkGbVtRkjgmEh3GoKiDrQOi6IpCWO+XgVFXW12yg2jsRDIxOiFehwmzM/TP5919a05VV9U51X2qzqW+HyjLrjpd/dZbp+o89d5Ot/aHDAAAAFDEP0RdAAAAAMQfoREAAAC+CI0AAADwRWgEAACAL0IjAAAAfBEaAQAA4IvQCAAAAF+ERgAAAPgiNAIAAMAXoREAAAC+CI0AAADwRWgEAACAL0IjAAAAfBEaAQAA4IvQCAAAAF+ERgAAAPgiNAIAAMAXoREAAAC+CI0AAADw9UjUBQCi8sUXX5i//vWvURcDAKrWI488Yn7wgx9EXQwE1K39oagLAURh4MCB5rPPPou6GABQtQYMGGDa2tqiLgYConsaAAAAvuieRtVavXq1efDgQdTFAICq1b1796iLgBLQPQ0AAABfdE8DAADAF6ERAAAAvgiNAAAA8EVoBJAoy5YtsxcEw9JSwW3dutU0NDREXQwgtgiNAAAA8EVoBAAAgC9CIwAAAHwRGoEYunr1qhk7dqz9/8mTJ0v6XW3frVu3kn+vWFn0eAAqQ++35cuXd7hdt82ZM6dTj6nPA52yr7OfC4XKVOh2pBOhEQhIH9YKUOKCWe4l98NTwS/3Nv1ukA/Z48ePm+3bt5slS5ZkAmRQdXV15tlnny3pd/T8dFDJNWTIEHPixIm89/k9Vr46cpdSHg+II28Ac1+uCn0u6L2ce7v7PPFyty1durTDfZs3bzbXrl3rVFm3bNliPv/885I+F7zv0f79+2fKpLLr+biyzpgxo1NlQvIQGoGA9IE9ceJE+2EpmmWpEyq5i4Javg/P3Nv0oX3kyBHf4KgP6ZkzZ5pjx47Z2a+ltBAocBY6gLny51KZ3CxbHQy8oe+5556zB5xiATnXypUrs+rHe1Hd6X4gyRTE3PtBnw2F9nc5fPhwh9v1hSzX6dOn7Ze0XC6g6fOgVPrsUFmvXLlSUkul3qO5X+70vm9pabGfTSqr3sv5ngfSidAIlEAfop9++mnRbVwrZL5WBGfu3Lk2hBaS+yGsv1tKC4ECbKEDmD7sc+lAsG3btg63F3oMBVpaF1Dt9B7W+0FhrBh9IfNbyse1RM6aNct+SXNh1PUy7Nixo8MXt6At9i+++KINevpcmTBhQuDu5NzPCvfF1d2uIMwSRdWF0AgE4Frn9GGZ222kb+65rYAKbcW+fT/99NNm/Pjx9v+FunF1gHD36UBSrJWwq9TC6EKp/o4OUAC6Tl8eve+vYpqbmzv0XmzatMne5wJq7v1+LfYKiPqscUFP1yqP32eJ++zR55D7fFOYbWpqyoRZtV66gKvtXRc9Q0/Si9AIBKDWRdetow/Go0ePZu7TB2ep4wcVKF1Loz7AC7XmHTp0yLeVUB/+uV3Jhbqn89GHvyuLDjBqOVArYr5WDW+g9eOCbr6L6gyoBqtWrepyiNJnjz4LSqXPBr23ddHnluv90M8bN24s2lXt/VzSuGq959Vt7m5bsWKF/YxyP6t8rouexeTTi9AIBKDWRQUdfePWOJ5x48Zl7tMHZ5T69etnD0qFupJ1UQuGLrl0UPEGTHeAEe8BIfeig4ffOCZ1hxUrT74ADCSJQpfeNz/84Q+zvmR5W/H0ueEmtXWGPm/UpVyI3v/56O8pGHoDnMrpuqY1NlKTavxWWnAtlfo8UHh0Q2/0vLyh88aNG7QwVgFCIxCQWuBKbVHMldsVrQ9rd+Dxdu+41jx9EJeTgpt3ckruuEZXXlcuHYjUMum6pLzjNr3PTQcUtTSKts9taXRdXO7S2WVEonTgwAEzdepU+7wvXLhgD666LFq0yAwbNszcunUr6iLGlls6RnXl/r9+/fqoi1Uy75hG75cs94XItdzrPg1J6ex+rsdTi2WxcdJe2ic13jDfpBnv8Brdry9w7v2cu0qDC5jud9z2Gr6ivzF48OBMma5fv24GDRrUiWeHJCE0AgG5Fji/iTDFuC4ftdS5ZXHcgcfbveNCnD6IK8Gt4eZCsQurrgXTlUsHInVLufFU3tbGfN3sOhC57Ytdik0KiqvVq1ebjz76yPTs2dO2POuig+uaNWvMpUuXzM6dO6MuYiwpULe2tpp33nnH1pX2G33JeOaZZ6IuWqgUpvTlyLtvq8Ww2PJZuV+m1EKpsCmLFy+2LYXFuC+g+iwJ+p7SPuveh96Q6crpAqNrRXQ/61qtnGoJFX0u0tKYfoRGoAQKV/p27bilacpBB5iuBNRSqNvJ2wKhsNrV56VWSbWwdLV1No7Usjhq1Cj7fwVEHazd86SFsTC1XKm+FLh79+6duV37Sd++fSMsWfhefvnlDkvnqMVQXb2F3lv5JsI4+oKmn70zn3PHDrovoF1dAkefc/qy5z4T9DcVYHPXkNQ+ry+Sohni3mE7SCdCI1ACtYi4b/5Oubpk9C1eH8RBFFuX0XUH5+OWB/L+vloYFFbd7O7O0MFF3dOFJtO4ruxyzQYvt+HDh9tWsrNnz9qf6+vrM/e529LWchaGDz74oEMLtfbxESNGZIXIpHLL5uhLhJbVyveFyRvEStWV92Qp+vTpk9Vl7T6H1NKpn72h1y02rs+QNH5BRDZCI+DDO85QH57eA566ZtwHqL6Zh7nIrT6A1ZLgN45JrYLF1mV0E08K/Y3cCSvqonKtBi5MuvDnXWKjGNWDxnkVKo+WCVGZkz4ZRvVUU1Njhg4dmrlt9+7dpra2NnUtZ12l1tk7d+5kWmhF+7b2rWITPZJAnwN6Hmp10/tJiu3b2v87M8PYDYHwUsALm96/3lnS4l2o3Dv2WUFWQdLbKor0IjQCPtwHqIKX+6bvxiK6rhm12HX2W7ZaHLyzF93EETdBwK2Z6F0yI1e+Ae/ebXWg8Xare3kPbm5MlA5oOhi5MOoG+WucpVt2w0+xAK2WzDQMmtfYMY3R87aS7dmzx0ybNs3eVurpH9Ps/v379trbWubGw6kOk8b7ZdKd7cV9JviNJ9R7rjPjeKNoydOXRLdWpPuc8pbDfblUyyrSj9AIlCB3LJJamhTINCbQdbXqAzXoqb70O3oMteC5Qe5u4ogeV+slqmtZByh3gPXKPfett3yazOINLW5pHi8FU2+3sVp8FI7LfYo/hdKkty5p7KLG573wwguZ2/R6qDVNr5teW+991U7vC7XKqn5E9ff22293aKlNCn0pcq303gBYyUldQdZL7So3Ec6tAetaHh235qr7Ao10IzQCAeWOL1SrnOumUUjUGL5Szw+tddS83T+5Z47QgUmte/rQzjcpRh/iboyltlWZ3LIeehy15rmxU/pZ93mDpIKpd/C9WkD0PMvdbZxvbGjSXL582QYe79hFhR91TWt5FL1e06dPj7CE8aNldd577z27T7777rvm7t27HVpqkyTs90m+2dOFuJ6ESpz32X2JdAt9u+EpbnyjbtfnBi3r6fdI1AUAksSNQ9KHY+5Ad4U7d6YYhbli3FI66vbRh36xbie1XOiDWQcU7/medVvupAJ1FXnPVqPWPO/iv/r93PDrHSOlUOm6ovI9bz1HPbdCYyQLyR0D6XeaxSTQa3b79u2s2xR+Ll68GFGJ4k8hywUthZ7333+/YpM7kkDvK+/7MTeEqfXarX8q5T7vs/t7+jtuSIq+ILsJdBqq4j679BnhJrhpOAtnhUmpdgAl0dvm4Yel73YPP2jbH4aj0P6uHq+lpSW0x8ulx/Y+vp5joeepsgSpA68rV67YutPvdsXD8GwvCObhgby9ra0t6mJ0sH///sDvpUrZsmVL++zZs0N/3CCHWr339B4JQts+DGYllUGPHfTzSI+f773q3sPFHifoc0AyddM/UYZWACjFsmXLsq5R3MCBA23rc9wWXlYXtVrPb968GZvu6a1bt9ouYc6NDuTHmEYAQMWoW1qBUWs2yoYNG1gQHUgIxjQCACpGY1k1bi93vUEA8UdLIwAAAHwRGgEAAOCL0AgAAABfzJ4GkCjujCJaWBv+vvjiC/Pkk0+aRx5hCLufBw8emG+//dY88cQTURcFiCVCIwAAAHzRPQ0AAABf9FegamnRY051BQDR0aLzbW1tURcDAREaUbVeeOEF8/XXX0ddDACoWowfTRbGNAIAAMAXYxoBAADgi9AIAAAAX4RGAAAA+CI0AkiUvXv32guCeeONN5jwFdCpU6fMpk2boi4GEFuERgCJcuHCBXtBMLt27bJnOoG/q1evmt/+9rdRFwOILUIjAAAAfBEaAQAA4IvQCAAAAF+ERgAAAPgiNAIAAMAX554GUkSzP3/1q1+Znj17ms8++8w0NDSYZ599NupiJZZmaXfv3t0MGTLEd9tbt26Zd99919TX1+et8yCvTdpePz0fzdwePnx4oO3Xr19vr+fPn5/3sdJUN2GhXlBJhEYgJXTwGD16tNm3b589aCjEjBkzxqxcudLMnDkz6uIlyvbt283GjRtNr169zOrVq4tue/LkSXP06FF7wN6yZYsZP358h22CvDZpev1UJ6qLc+fOZYJgIXreO3bssP9vamoyjY2NebdJS92EiXpBxbUDSIWGhob22trarNuam5vba2pqIipReTwMFvZSDi0tLe39+/e3dXnz5s2SfvfEiRPt+kjdv39/h/uCvDblev0GDBjQ3tbW1qXHCEp1UFdXZy+tra0l/77q72Fo7HB7pfbth0G3ffbs2aE+ZjlVy3se8cGYRiAl9uzZYyZOnJh127hx48ydO3dsyw/yU+uMWsMehitz+PBhc+bMGbN582bTu3fv0P5GkNcmya+fWmbHjh1rlixZYtauXWuOHTsWuEs6iCTXTTlRL6g0QiOQAhp7pwNFIeo+RTaFxeXLl9vuvPPnz5clLEqQ1yapr5/CosK2zjpTjrAoSa2bcqNeEAXGNAIpcP/+/aL33717t0IlSYZFixaZ3bt3mzlz5tixiOUU5LVJ2uunsPj222/b8ZsK22EHba+k1U2lUC+IAi2NAKrOyJEj7XVrayvdeJ3Qr18/28KoiS4HDx6MujgAKoTQCKDqaGapWhhfeOEFu7zL1KlTCY8l0ExddUVrLKi6pocNG2ZbHwGkG6ERSIGhQ4cWvd+1rCGbwuPFixftMi+axKHJHGGHnyCvTVJfP4VHTcZQV78mESk8apyoxouGJal1U27UC6JAaARSQGPK+vfvb7sLvdxg+KeeeiqKYiWGazlbsWKFXZ8xzJazIK9N0l8/LX6uSUQKj2rB1eSisMJj0uumXKgXRIHQCKSEFvRVq5mXDuA6Q0nYM1rTKl+3axjd1kFemzS8fi48Hjp0yJZ90qRJvot7B5GGuikH6gWVxuxpICXU1aqlY9TFqhYztThcu3bNbNq0KeqiJY7Coy4644bfKQS1zY0bN8zevXvtz2pt69Gjh+nTp0/md4O8Nml6/Vx4DNLSqG0uX75srl+/bn9W4FRQf+yxxzLBJ011EybqBZXWTSt8R10IAOFxIcZ70E2TZcuWZV1HzdV3Lm9ozN222GsT9us3cOBAGyY02zmOXGjMle/5l3vf3rp1qzl+/Lg9BWKSpP09j/igpRFIGQUVv9YxhKeU+g6ybbW9fhqbF3Sdx2qrm6CoF1QKoRFA1dGi3urGC0Ldfuqqxt+5MZ9BuGWNACQfoRFA1dF4O3SeQiBBEKg+zJ4GAACAL0IjAAAAfBEaAQAA4IvQCAAAAF+s04iq9eMf/9h89dVXURcDJXrw4IG97t69e8QlSYY//vGP5vHHHzff+c53oi5K7P35z382f/nLX0zPnj2jLkrVePLJJ81vfvObqIuBgJg9jar1s5/9zHz77bdRFwMlcku9aCkX+Hv11VfNggULzPe+972oixJ7Wtj797//vZk3b17URakajz76aNRFQAkIjahaP/rRj6IuAjpB54YWnToN/u7fv29Gjx4d2zPCxInO26wL+xaQH2MaAQAA4IvQCAAAAF+ERgAAAPgiNAIAAMAXoREAAAC+CI1Aypw8edJMnTrVLFq0KOqiJNqtW7fM+vXrzYULFwJtf+DAATNs2DB7Xeh+vS7Lly/PXHdmm7jSfqf6CuLq1av2uam+8lHdz5kzx+7Duqgucl+HINtUgyTvM0geltwBUkIH4h07dphRo0aZvXv3msbGxqiLlEiqx1WrVplr167ZtSD79u1bdHuFpaNHj9oFtC9dulRwm1mzZpmzZ8+aIUOG2Nu0rMvdu3fNmjVrAm8TR9u3bzcbN240gwYNMg0NDb7bK9QMHjzY7N69u+A206dPt/uxt25GjBhhbt68aXr37h14m7RL6j6DBGsHkDp6az8MjVEXoyyamprsJWxXrlxpfxh62mtra9tbWlpK/v0TJ07Yet+/f3+H++rr69vr6uqyblu3bl279yM4yDadMWDAgPa2trYuPUY+qiPVlepMdVcqPVf9fq7W1lb7nFWfXjU1Ne3Nzc2Bt+mMLVu2tM+ePbvTv19p5dpngELongZQ1Vx3/rRp08yECRPMxYsXzcyZM0P9G2r5VauYl+uadd3ZQbaJmrqEXbfy4cOHbWvh5s2bM61cYdi3b5+9Hjp0aNbt+puudTLINtUgCfsM0oXuaQBVSWFxyZIlplevXrYbOuyg6P07xRw5csT06NHDd5vJkyeHWaySKCxu2LDBBrKJEyfa6zCDopeeayHq/ldZgmyT9i7qIPtVlPsM0onQCKDqqDXm+vXrtsXq2Wefjbo4saYWq+eff96OVzx48GDqwxiAwuieBlB11FKmLukpU6Yw29SHWqtaWlpsy5Umn1TjDGUA/4vQCKDqqGtVY/E061QzTQcMGEB4LEJd95999pmZO3euWbhwoZ2hS3gEqg+hEUDVUnjU0iRnzpyxP2t8o9b+05i4sBTq/r537569Hj9+fKBt4kDh8dixY2bFihU2PCpshz3hotBzvX37tqmtrbXd40G2Sbuk7DNIF0IjgKqnkLF06VJz+fJlG4Q0KzfM8FhXV2cOHTqUddu5c+dMTU1NZgZwkG3iQoFF4XHbtm1m9erVoYbHcePG2Wu1Antpgosm4QTdphokaZ9BOhAaAeD/eMPjyJEjzZgxY3xnqQahljk3q9fRGEEFUzcLOcg2ceMNjxonqm7rMB5TYcg7Q1qvgYLQK6+8EnibapDEfQbJxuxpICXcGWE09kw0Zq9nz5727BvlWk4mrRQe58+fby9+3BlhXIBZvHixbe1Ra5jrQtT1/v37zaRJk+x6kK2trbb7cN68eZnHCbJNXKnsQWeha+yoxpFqPcw7d+7YUwBqP1VYd3bu3GneeustO1lJZ5rR2Xk0090bhIJsk3ZJ3meQTN20wnfUhQCAoJYtW5Z1jeIGDhxoQ626kFHc1q1bzfHjx82WLVuiLgoQS3RPAwAAwBfd0wCqjsZ8qTszCI0bq+YFwN2Zc4JQN7GGRQBIJ0IjgKpDsAnOTXYBALqnAQAA4IvQCAAAAF+ERgAAAPgiNAIAAMAX6zSiamn9OrcQNgCg8rR+aFtbW9TFQECERgCJwuLepWFx7+BY3Bsoju5pAAAA+CI0AgAAwBehEQAAAL4IjQAAAPBFaAQAAIAvzj0NpMzVq1fNjRs3zGOPPWaGDx8edXGqiupehgwZUvB+v9cm7a/fyZMnzdChQ03v3r2zbtM5rvNtK7nbl7pN2qV9n0F80NIIpMSFCxfMnDlzzOnTp829e/dMc3OzGTZsWOagitKo3qZOnepbfzpga5tFixaZ0aNHm8uXL+fdTve/8cYb9v/79u0zY8eOzYTMUraJo1u3bpnly5fb/c/Pc889ZwOenpsu3bp1MxcvXszaRvuylgjSfqzL9OnTzfr160vephokdZ9BQrUDSIXa2tr2EydOdLitpqamvbW1NaJSha+pqcleyqWlpaW9f//+7Y2NjYHq7cqVK7beddFH6v79+/M+pl4Hr4aGhvb6+vqStumMh8Gqva2trUuPUYieu8qo/Uzlv3nzpu/v6DnW1dXZi+pYj5FL9b9u3bqsv6O69b4eQbYp1ZYtW9pnz57d6d+vtHLtM0AhtDQCKaCWrkuXLpkpU6bYVh9n2rRp5s6dO7YFAsVt377dtlydP3/eHDp0yKxZsyZQV5+6ovN1rXq99957tgXIa8KECWbv3r2ZVqEg28SFyqNWRe1fKqNaCmfOnBmoe7hfv37m2LFj9qI6zu3KP3DggPn888/NM888k7lN2zwMiebDDz8MvE01SNI+g3QgNAIpoO6+hoYGs2LFiqod19UZrlu1V69eWWGx0JjEzv4NBfpBgwZl3a7wJBpOEGSbONCXE4WU3LAYpiNHjtjrvn37Zt2uQH/u3DlbV0G2Sbuk7DNIFybCACmgoLh58+YOt+/evdteqwUSf6dWmB07dtg6e/31183Zs2dDDYpehcY4Ogqr7kBfbJuww1kp1LK3evVqG641fm7y5Mldejy1Uirg6dzvesxXXnklU/8KfYUoJAXdJu2C7FdR7jNIJ0IjkFKaKKADaGNjIzMqc6il7Pr167bb3q9rudopMD7//PO2Jfudd97pcku26v3gwYOZx9FkIwXRjz76iFZyIObongZSSF1XL730kqmvr7fdrcimblXNtH3xxRdtd6sCNvJTq+KVK1fs/zUMQvXWle7f27dvZ4XDl19+2Y7B82s5AxA9QiOQQm+99ZYd67Rnz56oixJb6rpT96hauRYuXGjDYzmWJ9LaecX07Nkz0DZRUtexuvLVjf/NN9+YMWPG2PAYxmSLHj162OujR4/aa3VXF6PAGWSbtIv7PoN0IjQCKePWynOBUa1CtKQVppY0zeTVJKIlS5bYsXbqkg2LGxqgFjYvddPKqFGjAm0TBwqPS5cuNWfOnLHhUetSap3AoOFR2yrw5dsf7969a69HjBhhr7X2opcCfm1tbeBt0i4p+wzShdAIpIgC48iRI7MmxezcudN88sknEZYqGTS2UeFx27ZtdtJHmOFR4wFzJ298+umnpqamJjOpJMg2caGWPIVHdSmrRStoeFTA0aQf76xnF/w0lEJmzJhhr3O7q7XEzty5cwNvUw2StM8gHQiNQEponUG1Lu7atStztg1dfvGLX5innnoq6uIlhguPGmen2edhdFkvXrzYtgC5x1Lrr4K99wwmQbaJG2941JeVVatWFd3+1VdfNRMnTswERT1HPW8FRjchSa2Zmry1adOmzNhJ1YHWYJw/f37gbapBEvcZJFs3rfAddSEAdI1aeDShoBCFoLRYtmxZ1nXUdMDWeLzW1lbbkqbuV3Wfjhs3Lmtmtl4jhSq31IxaiXJnbgfZplQDBw605dNjxoFb7kjUJe0NjF76EnT48GFbn2rNnDdvXoexikG2KcXWrVvN8ePHzZYtWzr9GJVWjn0GKITQCCBR4hYa4y5uoTHOkhgagUpinUYAVUcTMe7fvx9oWy0zUw2zcQtRl2fQ5XA0o5c1QYH0IjQCqDqnTp2ys3+DUBCq5tD45ZdfZpbD8fP4448TGoEUIzQCqDrVNFmiqxQCCYIAhNnTAAAA8EVoBAAAgC9CIwAAAHwxphFV63e/+5359ttvoy4GSvT111/b6zStPVlOmsijc0ZrDT8UpzPK/PnPf2bfqqBHH33U/OhHP4q6GAiIdRpRtX784x+br776KupioEQPHjyw1927d4+4JMnwxz/+0c5q/s53vhN1UWJPgfEvf/mLXSgclfHkk0+a3/zmN1EXAwERGgEkCot7l4bFvYNjcW+gOMY0AgAAwBehEQAAAL4IjQAAAPBFaAQAAIAvQiMAAAB8sU4jkCJXr141p0+fNp9++qn9ecaMGWbIkCERl6p6HDhwwHz/+98veK7m7du329dGS+BMnz7d9O7du1PbJFGl6iat9VdMNT5nRIOWRiAldFCeNm2aefrpp83SpUvN4MGDzQ9/+EOzfv36qIuWOArfy5cvt8vUnDx5sui2ul/bzpkzxzz//PPmD3/4Q4dtbt26ZYYNG2Zu375tXxv9f8yYMVmPHWSbOIhr3SSl/sJUjc8ZEWsHkAp1dXVac7V9//79mdv0c01NTfvNmzcjLFm4mpqa7KUcrly50t7Q0NDev3//rHoM4sSJEx3q32lubraP6dXY2NheW1tb0jad8TDctbe1tXXpMSTudRNG/W3ZsqV99uzZgbePWrn2GaAQWhqBlFi7dq1Zt26dGT16dNbtOrsF3VXFXbhwwbaGTZw40bbW6pR7kydPDu3xN2/ebMaPH591m36+dOmS/dtBt4lCUuomrvVXTtX4nBEtQiOQEhorNn/+/ExAdAeN119/PcpixZq68caOHWvq6+vLEohE3bk6p3GvXr2ybu/Ro4e9PnXqVKBtKi1JdRPH+iu3anzOiB4TYYAU0gHlpZdesgd8BUlk0/jP1atX2/+rhbbQ5Iww3Lhxo+j9bW1tgbaplCTWTZzqr1Kq8TkjeoRGIGU08cAZMWJEhCWJr927d5uLFy+aFStWmL59+0ZdnFihbgAUQvc0kDKaRamLDv5NTU12PBqyaSzY2bNnzfnz583QoUPtDHPNRAV1A6AwQiOQUlqfsa6uzmzZsoVB8XmofhSQLl++bL755hu7VIlaadW1H6Y+ffoUvX/gwIGBtqmkpNVN3OqvEqrxOSN6hEYgJdQipEV+89m3b1+FS5McmjikltkzZ87YnzX7fNGiRaEFJAWwmpoac+3atazb1QUsWlsvyDZRSErdxLX+yqkanzOiR2gEUkAzXRcsWGBmzZqVtytRZ4pAcS4gqXVNyxSFGZBee+0109ramnWbJirU1taaZ599NvA2UUlC3cS5/sqlGp8zokVoBFJABwh1RTc0NGRuU5A8fvw4M6hL5AKSzrIxcuTIwL93/fp1e51v1uq8efNs2HKTlPTaaMyp92w9QbaJWpzrJgn1F7ZqfM6IVjet8B11IQCEQ2MXP/nkk8x5aJ955tkNwGkAACAASURBVJmyLpkShWXLlmVdR00H6qNHj3a4fdy4cR1ae6I4d7LGtql8Ou1fpUVRN12pv61bt9ovWhoHnCScexqVQmgEkChxC41xF2VoTJqkhkagUlinEUDVUfedZgUHMWXKlNS11hZD3QAohNAIoOqo2/7+/fuBtq22Ba6pGwCFEBoBVB1axwqjbgAUwuxpAAAA+CI0AgAAwBehEQAAAL5YcgdVa+3atebOnTtRFwMlcufRZuxdMFrs+d/+7d9M9+7doy5K7OkMN1999ZWdDITK0KkQFy5cGHUxEBATYQAkyqOPPhp1ERKlR48e5h/+gU6lIL773e+af/qnf4q6GEBs0dIIIFFY3Ls0LO4dHIt7A8Xx9RMAAAC+CI0AAADwRWgEAACAL0IjAAAAfBEaAQAA4Isld4CUunXrlvnJT35iPvroI9O7d++oixN7qq/Lly+bZ599NtD2J0+etLNsN2/enPexNmzYYP//2WefmQkTJpiZM2d22G779u3m/Pnz9v89e/Y08+bN6/BaBdkmDoLW39ixY8348ePNuHHj7M+a2X337l2zZs2arO3SVDflpLUlf/WrX9nnr32toaEh8D4MlKwdQCo1NjZqOa32mzdvRl2UUDU1NdlLWK5cuWLrqra2tn3dunW+2zc3N9tL//797e/ko9u1jVNfX9/+8GCetY3+Zl1dXeZn/W09Zqnb+BkwYEB7W1tbSb9TilLrT/uk96J60WN4Vapucj38EtA+e/bsLj1GJaneampq2k+cOGF/1ntdddDS0hJxyZBWhEYghXQQ0cGE0FiYDrgKLDrI7t+/v+TfV2DJFxp1wM6td70euq21tTXzt/Vz7t/VbS54BdkmiHKFxs7Wn+pM9aFLvn2zknWTK2mhUfWfuw/qy4re+0A5MKYRSBl1E77//vtm6tSpURclltStPGfOHDNx4kQzbdo026U3efLk0B5/165d5uGBPKub1HUX7tu3z15//PHH9nr06NFZv/swiNrfD7pNFMKoP9WHLvm6kpNcN5W2Z88e+zp4qdtfp0fV6wSEjdAIpMy7775rGhsbOQNIDh1ENZ5u/vz5ZQmLzrFjxwred+TIEXt9+PDhgttcvHjRBv8g21RSmPWncXjLly8369evt//3SmLdREHnYFc4LERjRYGwMREGSBHXuqBWHA4a/0sH15deesn06tXLrF271gwfPrysf08H8n79+uW97/bt21nXhX4/6DaVEHb9Xb9+3U7c0MQXPbZaylauXJmZKJSkuonS/fv3i96vyUVA2GhpBFLCdUu/+eabURclVrp3725GjRplW8bUPVwNrVBhCrv+VqxYkZkprQD6+uuv29bL3BZHAPFDaARSwnVLV9uSI36GDBlil8U5dOiQDT6TJk2yXaOEx2DCrj8FRK9hw4bZ1sHTp0+HUVwAZURoBFJA3dLnzp3L/F8XHeDl7Nmzthuw2rnwc/DgQfuzwo8mdITdwqVJMIWoxc57nU///v1t8A+yTSWFUX/aDzWOMR+33mIS6yYKQ4cOLXr/yJEjK1QSVBNCI5ACffr0sd1+8KdAsXTpUht+NFlIY+rCDI8KNBq3522Jc2NN3YHcXWsxbK/jx4+bESNGBN4mCl2pv4ULF5oFCxbkndk7cOBAe53kuqkkvQ4KyO7LouPGMj/11FNRFAspR2gEUkCtQG4ZE3dxs6e1LEm5J38kkQs/Z86csXWlGcEKP121ePFi29365ZdfZm5TiNQBfvr06fZnTfrQz5rp67jQ1dTUFHibKHWm/l544QXT3NycdcYShZyamhrz//7f/7M/p6FuKkUTiLx1IOphqK+v5z2PsmD2NJAy7nRuu3fvtj+rRUitDhxE8nPhR5cgrWVqJbt37549OGuG6oEDB0yPHj0yQUgBvqWlxc44XrVqlQ2Q7733ntm2bVtWt+nevXvtNqJWttWrV5t169ZlvU5BtolaKfWn8YwaD7lo0SIbbBQYtQyRJtio3py01E25KTyrW19LIamnQfV57do1s2nTpqiLhpTqphW+oy4EgPC40Oj12GOPpeZgumzZsqzrSiu0aHLu+X69r0OxcwG7x9MYtUJj8YJsU4gClcJEnNbtdHWjYRXesJir3HWTa+vWrbaLW+cUTxKF9Rs3bqTqfY54oqURSBkdOKthIkBUigVAr6CvQ5DHC/o3k4K6CZeCd7HwDYSF0Agg1dQStWTJkkDbDho0yM4Qxt9RfwAcQiOAVFNLVLFT+6E46g+Aw+xpAAAA+CI0AgAAwBehEQAAAL4IjQAAAPDFOo2oWj/+8Y/NV199FXUxUCItli06iwj8ffHFF+bJJ580jzzCvEc/Dx48MN9++6154oknoi5K1dC++Zvf/CbqYiAgPkVQtX72s5/ZAwSSZdeuXfZap6SDv1dffdVevve970VdlNjTwt6///3vzbx586IuStV49NFHoy4CSkBoRNX60Y9+FHUR0Alu+RedOg3+7t+/b88/HqczwsSVTg2pC/sWkB9jGgEAAOCL0AgAAABfhEYAAAD4IjQCAADAF6ERAAAAvpg9DaRIt27dTH19vRkxYoT9+ciRI2bQoEFm8+bNEZcs/k6ePGkuXrxo5s+f77vt1atXzY4dO8zu3bvt7+S6cOGCaW5utq+DZuPKO++8Y3r37p3Z5tatW+att94yvXr1sj9fu3bNNDU1meHDh5e0TRRUrp07d5pnnnkmUFkOHDhgFi9ebFatWmUmT56c9/5NmzbZ+mptbbXXS5cuLcs2aaR99/3337fv9TVr1kRdHKQYoRFIES14vXfvXnupra01P//5z82kSZOiLlasbd++3WzcuNEecBsaGny3X758uRk8eLANjPkoUI0bN860tLRkApJ+R6+DN2BOnz7djBo1KnOQ14FfIefmzZuZcBlkm0pSWFbwU3jVOpl9+/Ytur3Ke/ToUfP444+bS5cuFdxm1qxZ5uzZs2bIkCH2Ni15c/fu3aznHcY2aeO+vGgf0Xu+sbEx6iIh7doBpMbDoBh1EcquqanJXrrqYaiz9fUwKLZfuXKl5N+vq6vLW9/r1q1rfxje2x8Gu8xtra2tOvNW+4kTJ/L+7Oj3mpubA28TxIABA9rb2toCb5+P6kf1pOereiuVnoOey/79+zvcV19fb+vSS3XoPTyFtY2fLVu2tM+ePTvw9nGi5/kwNEZdDKQcYxoBVA21AqrVb9iwYebw4cO2tVBd965lKgw6Y02/fv2yWgJdF65ag2Tfvn32eujQoVm/q3K5Fswg25SbWu+mTp1qpk2bZiZMmGBbSmfOnBnq31CdqKXMS89R1N0c5jYAuobuaSBl1q9fb7755hs7lk4H+3xjyKqNwuKGDRts2Jo4caK9DjMoeulUdBoakM+hQ4fstcaaFqJuXJU3yDbl6qJWWFyyZIkdS6lu6LCDovfvFKM66NGjRyjb8D4Auo7QCKSIwsTAgQPtZA6Nd9Lp41asWBFockdaqZXp+eeft+MVDx48GMlYwCRR69z169dtS+ezzz4bdXEAxAjd00CKnDhxItOiopY0dS0uWLDAzuatVqoPTUpRa5MmllRzXQShVljtN1OmTLFd+QDgEBqBFMltGRowYIC9PnXqVASliQ91r6q7fu7cuWbhwoV2Vi3hMT992dA4T81C1sxj7UOERwBCaARSYtGiRfaSj1vnr9opPB47dsx22Ss8KhCFPUmirq6uw20afygaTynjx4/P+7u3b9+24yHVhR5km3JSeNRSNWfOnLE/ax+aM2dO5rmEoVD397179+y16iCsbQB0HaERSAm1DmmiRb6D+tNPPx1BieJLIUPhcdu2bWb16tWhhkcFFDdRxbl8+XLmPtE6jqLWPC/9nguWQbapBIVTLZCt56B60mzuMMOjQrabIOScO3fOrjnqZo6HtQ2AriE0AimhA7kW83YtUDqoK0hqAki5ZgonnTc8aiyfuq27at68eTaoeMOeFrhWqNHEJPd39bN3hrRmEuv3XnnllcDbVJI3PI4cOdKMGTPGd/ZzEGr1zQ3Zes7an91+G9Y2ALqG2dNASqgrUWPPdJBUi5BOo7Zy5UrOCBOAAlrQmcKqY43105qFd+7csUMCevbsmTldncKVQqK6vxVa1J0sOr2dt0tZp+HTKQI16URno9FZVjRj2RtwgmxTaXoOmo0fZEa+OyOMC746laBa/9SK6upb1/v377f7qZaI0n6rFlmFbyesbdLGnRHGnapSXxK1L+qMReVaJgnVrZtW+I66EAAQ1LJly7KuUZyWYFJwc5OiUNjWrVvtOptbtmyJuihALNE9DQAAAF90TwNINXd2kyDUBawuvmqm4Q3qBg9C4whZAByoHoRGAKnmJrsgmGoPzQAKo3saAAAAvgiNAAAA8EVoBAAAgC9CIwAAAHyxTiOqltavc4viAgAqT+uHtrW1RV0MBERoBJAoLO5dGhb3Do7FvYHi6J4GAACAL0IjAAAAfBEaASBmbt26ZaZOnWqvASAuCI0AEDPvvvuu2bt3b9TFAIAshEYAiBGdK/vcuXNRFwMAOuDc00AKXb161dy4ccP+X+deRuVcuHDB9O3b1/Tu3Tvv/QqFMnTo0A7bqDt6yZIlZsWKFea5554re1nLTfvhgwcPzPDhw7NukyFDhnTYVvvsY489lrV9ObZJm2p8zogGLY1Aiih0zJkzx7z88sv254sXL9qfGRvXOdu3bzdjx471rT8FxQMHDti6HjFiRMFttOzNvXv37GX69Olm/fr1Wdu89dZbZu3ataGVv1wUfDXm0gXgQnbs2GHrY9iwYbYe9fwnTpxoevTokbXdokWLzBtvvGH/v2/fPrutC5dhb5M21ficEaF2AKlRW1vbXl9fn/m5rq5O67C2X7lyJcJShaupqcleyuXmzZvtzc3N7f37929ft25doLprbW21F/2e6luPkcs9nqPH1bb6Pdm/f397S0uL/f+JEycKPk6pHga19ra2ti4/jqh8eh6NjY2Zchej+tA+qf1Q+6V7frmPWVNTk3VbQ0ND1n4c1jZ+tmzZ0j579uzA20ctjOcMlIKWRiAl1Cp26dIl8zBQZW5TN+fDoNKhKxAdqTVx+fLlZsyYMebxxx83Z86cMfPnzw9Ud+oSLNYtqFbIzz//3DzzzDOZ2/S4DwOY+fDDD+3Ps2bNMp9++qktg1tcWhNi/FrzKkH7lloJz58/bw4dOmTWrFkTuBt01apV5tixY2bPnj1m5syZHe5/7733bOuY14QJE+xEINdiFtY2aVONzxnRYkwjkBI6gNTU1GQdzDWekTGNxengqmCjUKOQrbBYaDxiZx05csRea6yjl4KYJr0osN6+fTtzu4KiguObb74ZelmCUpk2bNhgPvjgA9vtrrAY9pcP/Q190VGXtVe/fv3s9enTp21XdhjbpO2LU5C6S9tzRvRoaQRSwB1AdMBQS5UuGnOmgz0tDvlpjKHqZ9q0abZ15vLly7ZlsRwhrdhsaL1uueXSaf/k7NmzFR+Pqv3F2+KqMqhlsbMBRIFZ9azHVKuYWl0d1XkxatkMa5u0qcbnjOjR0gikgDuAKID8+te/zrQ2upasgwcPRtZiFUcKRuPGjbMhe/fu3bFrkVHZdImCQvT169ftpIowWql79uxpQ6dMmTLFTow5ceIELeBAAtHSCKRIXV1dVve0WngUJHfu3BlhqeJHIVFBWwFp9OjRdgZqXFpk9fq5YQW6VDrsa8a9ZnW/+OKLtmVQLZ+dtXTpUntx9Nxqa2vtskIAkofQCKRAnz597PWoUaPy3t/W1lbJ4iSCwpgCjcLjyJEj7dgwhceuhKRCevXq5VuWONGElc8++8wu5bJw4UIbHsOakKO6UDBVt7vWFSxGrZRhbZM21ficET1CI5ACajnTJBjvZAovDiCFKbC5kKTwWF9f3+UWtlxu7Uatz+ilv6mWt7iaPHmynfmsCUJqHdRwB++YxGLUcquAqNbuXHfu3LHXrlU8d79V97joS1BY26RNNT5nRI/QCKSEDs65Ey7u3r1rrzWWDP5ceJw7d26o4XHGjBn2Onfygpbh0d+KO3WTKzxu27bNrF69OnB4VDjUJCMvhRwNo3Ctqw0NDR32Wy09pC9BCq1hbpM21ficES1CI5ASWp5FtKaeKOxs3rzZrtPIqcVK4+2e1TqKXR3vqJbgxsZGs2nTpsxsaI0b1DqNmrGdFC48ah1ATSAq1mXtnrMCjOPWEvWe9Wbx4sW2dcw9lupH+633bDlhbZM21ficEa1uWuE76kIACIcOGpr08s0339jQo5aItM1SXbZsWdZ1HCgMqYXHrcc4aNAg2xqnFkbvzGxtd/jwYdttqyED8+bNK/t4xoEDB9olfFSeKLi6Uau3yqLTJ+Y+Z7dWpspYaL8Na5titm7dao4fP55ZXD0JuvqcgVIQGgEkShxDY5xFHRqTJImhEagk1mkEUJVKmQ1cTS03GtZw//79QNsOHTo0djO/AZQPoRFA1VE3vjvrShDVFI5OnTplhzcEoWVfqqVeABAaAVQht0YjOkrSxBwAlcXsaQAAAPgiNAIAAMAXoREAAAC+GNOIqvXFF1+Yv/71r1EXAyVyp6DTmnTwp31c+zr8ff311+bBgwfsWxX0yCOPmB/84AdRFwMBsU4jqpaWUeFgmjx/+ctf7PV3v/vdiEuSDH/605/MP/7jP5p/+Ac6lvz8z//8j/nb3/5mHn300aiLUjUUGEtZ/grRIjQCSBQW9y4Ni3sHx+LeQHF89QQAAIAvQiMAAAB8ERoBIGauXr1qevXqZc9cA38HDhwww4YNi7oYQOoRGgEgZl5++eXMLHEUp2A9a9asqIsBVAVCIwDEyPr1682oUaOiLkZivPXWW2bq1KlRFwOoCqzTCKSEujR37NhR8P4pU6aY4cOHV7BE1Umhb/r06fb81rm8r9G4cePssk9eFy5cMOfPnzcNDQ3m/fffr0h5o6Tn+4c//MFMnjw57/3bt283n376qXn88cfz1qnqesKECXabc+fOVaLIseVXl0AYaGkEUkJhpKmpKe9l9+7dBMYS6SA8Z84cu1SN39hChZvly5ebsWPHmgULFhTcZuLEiWbevHn2omVdclvIPvzwQ7N48eLQnkOlqH70/FRXCnLFKDirrnQZMWKEOXLkSN7H0xjF27dvm6VLl9r/jxkzJms9Pz1OW1ubmTRpUujPJylcXS5atKhgXQJhIjQCKdHa2mquXLlitPSq91JXV2d+/etfR128xFAwUfhbuHChefXVV+3ZQfK1GnrNnDnThpvx48fnvV8haP78+WblypX2sXR55513zN69e+0kDtHBXy2MQ4YMCf05lYuel8qtQKeAd+bMGfs8i9HzU13pUsiGDRvM3bt3M4+lFtlp06ZlPfaqVavMK6+84vvapJmryzVr1kRdFFQJuqeBlBg0aFCHwKEWiLlz59LKGIDC2+rVq+3/165dG2qdHTx40E5sefrppzO3KezU1taaTZs22S5F10qkhbjdaezeffddU19f36EbO2qum33z5s3m9ddft2ExzPCmx80N4PpZXfZqARaFVNfVr7q7fv26DbAzZsxIVPAGkoTQCKREbmuDWsw0zotWiOLUrfr222/brtWww6Jz+PBhe92jR4+s27WsjlqI1WJ37NixzO167dR9/eabb8aqJU1hUS18e/bsMStWrAg9LLq/8fnnn9u68XJ1d+rUKdviqDJ4ua5sAOVD9zSQQgohL774om3FQn4ae6egqIknhw4dsqGtXC2y165dK3ifApKXQqybBKOWRoWoqLnxnRqTqW5iBTQFt3IE2hs3bhS9X+MYvdS6qDG7rqURQPnQ0gikkMaEKRDRTZefgtiuXbtMz549zciRI2NVTxofqUucqHVPLXsKjkOHDo26OFn8xkcCCA8tjUAKaUwYa/0VppColkW1Nm7cuNHOzlULH/JTq+Lly5dtyB49erQdKxuHFlAAlUVoBFJGXYnq8iw0kxd/pwkmCo/q3tS4Q4VHBcmwT9+nSUqF1NTUxGrcYiEqo1r01DWt1ll1VSs8epfBCUOfPn2K3j9w4MBQ/x6A4AiNQMrs27cv6iIkjloe1Tqr8KgxjuqCDTM8KmTJl19+mXX7xYsXE3nOZHWfa4a3npfGzmq9ybDCo14LBenccaCqK0lifQFpQWgEUsYt14LSufB49uzZUMOjzmaiIPTJJ59kbtNjahmeN954o6vFjowLjy+88EKo4fG1116zs8q9NAFGSxTFbfkhoJoQGoGUKTZTF8G48KhxfLlLvxTjAntui6K6dhU+33vvPTt8QIFR50zWGoxpOO2bC4+NjY2Bf8eNicy3v+qMORo/6WZDK4iqFdjvbDPVqlhdAmHq1q5TRgBIDYUSt5ZdGi1btizrOg7cOZJz5S407Xfu6XLQGEAtGK7Z9HFQ6BzpgwcP7jBr3O/c02HbunWrOX78uF0jMwlKqUsgDIRGAIkSx9AYZ3ELjXGWtNAIVBrrNAKoOuoe1lqWQam7NAkznMtFp1jU2YWC0FJPaehyB9ARoRFA1VEAVPdwKdtXM00Iyj0FYiF+S+YASC5CI4CqxCzc4DQuM05nzQEQDWZPAwAAwBehEQAAAL4IjQAAAPDFmEZUrV27dpkHDx5EXQyU6IsvvrDXWh4F/v75n//Z/Pu//7tdLBvF/dd//Zf9TGDfqpzu3bvbMwohGQiNqFqnT582X3/9ddTFQImuX79ur//2t79FXJJk+NOf/mR+97vfmUcffTTqosTezZs3zd27d+1ajaiMJ554gtCYICzuDSBRWNy7NCzuHRyLewPFMaYRAAAAvgiNABATJ0+ezPxfZ63RecSRX2796DzMugAoH0IjAMTEc889Z8aOHWsWLVpkz8KCwi5fvmxGjBhh5syZYy8TJ04MfNYaAJ1DaASAmKipqbHXt2/ftuMQhw8fHnGJ4q1///7m2rVrplevXubMmTNVf7pHoNyYPQ0AMdGvXz9z7NixqIuRGNOmTTNr1qyJuhhA1SA0Aimzfft28+mnn9r/z5gxg3MGV9j69evN9OnT87Z6aczdjh077P/HjRvX4fzXWu5FXa1qOVNr4+LFi1P9+mlM4h/+8AczefLkvPe7ffnxxx/PW6eHDh2yXfmqK80OnzdvHq2NHn71qzG0atEWPisQBN3TQEpoYsDUqVNta9XSpUvNlClTzMsvv2wPvCidDrgKcAojqttiVMfLly+34xEXLFhQcBuNu1Ow0UXLuuj18lq5cqXZvHmzbT1TEHrjjTdCez7lpPrR81NdKTQXo+CsutJFYxKPHDmS9/GGDRtm60D7sv4/ZsyYrIlCffr0sX9LdaU6++CDD8zOnTtDf25xEHb9ivbt999/39avAqNabf0eGzDtAFKhubm5vaWlJeu21tbW9v79+7ffvHkzolKFr6mpyV7K5cSJE+11dXX2ovorhV4Dfazm1rd+rqmpyXp9dJu23b9/v/35ypUrWX9Pj6Xf6epr9zBotLe1tXXpMQpR2VRO7WPr1q0ruax6/o2NjR1ud4/ppe1qa2szP6uuVGeOe8264mGQb589e3aXHiNM5apf7eO6z1t/2g+1v3lvA3LR0gikhFoUzp8/3+F2dXnC34EDB2xL4ZIlS8zatWvt2MKwJqIcPHjQ3Llzxzz99NOZ29SN+jAEmU2bNtmf1aq4cOHCDr8bx+5W15ql1j91HWsSyvz580Mrq1oOx48fn3Wbfr506VJmmR1177uufkfd+mlQ7vpVK7cmEXm7o0ePHm330Y8//jiUv4F0IjQCKaFTcam7SV2ebr265uZms2LFilgGj7hw3X6rV68OPSw6hw8ftte5S8Io5LS2ttruRw0lcEFJPys4vfbaa6GWo6u0X6lbUwGjHGHG/Y3PP/+8QwB0dXfq1Cl7rXIoOIqCpM7k0tjYGFo5olCJ+hV9wcw9F7n7G25fBfJhIgyQEjq46AN/7969NvhoHNjcuXPNzJkzoy5aLGn81i9+8Qs7lksTKso5CUDLwhSigCRusoImdsgvf/nLghMYKk2h7MMPP7RhQ+VSoC2XGzduFL2/ra3NXmsso1rjNJFDrekK30ldoqiS9Sva59TKnU+xfRUgNAIpopYWTR64ePGibXmRp556KrEH03JRi86uXbtsa8vIkSNjM2tUITEuQdFLrXt79uyxrWBxWnRckzjSIK71C+SiexpICXWzqrVRM0h1tgwFSAXH+vp6Tq+WQyFRrbFqbdy4caNtlWWWeWHar7RPKWSr61StoexT4aF+kRSERiAFNAZOB55f//rXdmySLuq+a2lpsV1RDG7PT+skKjzu3r3bdu0rPCpI+i2xU6pBgwYVvE9ngUnCmFOVUS17aslW66yWD1K48S6DEwYtpVPMwIEDQ/17cVGp+hVNgimk2L4KEBqBFFArhWY+9u3bN+t2jWesq6sz33zzTUQlSwa1PGocmcKjZqCrizDM8KgQIF9++WXW7RpGoKCaNNqvPvvsM/u8XnzxRTv5Kqxwo9dCQTp3bJ3qSpJYX6UqZ/2K1m/UOFDv/u1mpes+oBBCI5ACCjk60J49e7bDfTr4aKFv+HPhUfUYZnjU2Uz0+nzyySeZ2/SYCvpJWcA7HxduNHM/zHCjWeOa2OKlCTCavJF7Fp00K1f9auiKeiDu3buXuU1njtE+qoW+gUIIjUAKqGtLs0h/+tOfZsbmuTOavP7660yEKZELj2rBLWXtPx3gJbdFUa+Pwud7771nXxcFxrfeesuON43jxJdSuXBTypI3bsxevtm6OmOOxvdpdrQoKKkVuFrPWBJ2/Sp4NzQ02C8s2he1rU5ZqeW54jIpDPHUTSt8R10IAOHQAUCtZOfOnTODBw82kyZNSsR4uVIsW7Ys6zoOvOf79so9n6/fuafLQWMA9YVCa1HGgbcOvLS/5i4P5Xfu6bBt3brVTh7T4tdJVUr9cu5plIrQCCBR4hga4yxuoTHO0hAagXJinUYA9lyQ5QAAFXpJREFUVUctshs2bAi8vbpL09ZiWwqdYlGt10GMGjUqFV3ulUT9IikIjQCqjgKgOwVd0O2rmSYE5Z4CsRC/JXPQEfWLpCA0AqhK1TQLt6s01o3xbuVD/SIpmD0NAAAAX4RGAAAA+CI0AgAAwBdL7qBqaWHbr7/+OupioERfffWVvX7yyScjLkky/Pd//7cdL/fd73436qLEnk63+eDBA9OvX7+oi1I1nnjiCbN69eqoi4GAmAiDqvX000/bAwSS5T/+4z/stc6pDX+//e1vzb/+67+WdGabavWf//mfdjFx9q3K6d69e9RFQAkIjahaOp8rksedqm/27NmRliMpmpub7TmLWdw7mD/96U/sW0ABjGkEAACAL0IjAMTE8uXL7dlqROcF1plCkJ/Osbx+/frMzzpP9YULFyIsEZB+hEYAiImmpiZ7dpBhw4aZF1980YwePTrqIsXWjRs3zIIFC2y3uy67du0yw4cPj7pYidStWzcbuovR/doO1Y3QCAAx0b9/f/Paa6+Zn//85+bMmTNVf/pCP5qwMmfOHPPLX/7S7NmzJ+riFKQWZAWu3ItuL3SfLmpN9dJzVUDWfWPHjrXXapH23p570Xb56Pcc7XczZ870fR4NDQ1dqgckH6ERAGKiZ8+eZsaMGXbJFwKjv1GjRpkpU6aY73//+1EXpailS5carW6Xe3Hy3adLvlMLrly50t43d+5cG+Lc6TDd7d6LQvWKFSvylkkt2QqbQCkIjUCKqGVi0aJFtvVCM2a9rQnoHNWhG2foR/Wvei+0vbr49Pq41yh3u7t375odO3aYe/fu2S7qpL1+ev6ljCvUmETvuMTcx3L1pHCTry4OHTpkPvnkE3Pq1CnbopbbMhd3biWAzjh8+HCnW/5UT59//rnZsmWLbY3U/72tk66rWnXPrHt4seQOkBI6WI8bN87s27fPtj4okIwZM8Z23U2ePDnq4iWK6m7nzp1m48aNtjVr8+bNRbfXQVbr+x05csQcP37cfPTRRx22UQA6d+6cOXbsmP1ZYUmvjzc47N27NzMub/fu3WbJkiWZ7eNMgU4BRM+vUAh0FFgUjEVjOBsbG/Nuo/GcufuyWtNcN6rGfqqOXGvcL37xC/u4atVLksGDB3f6d10ro8yaNcteglA9nThxIvP7CoaFAqzqHHBoaQRSor6+3nZvugOBujfVQhP0QIL/DYtqXVFA0dlBLl686BsYRUFGYWX8+PF571cIev/99+1ZiJz58+fbFh4XshS81Grm6ECuABq0lTMKKrNa+BRuX331VVtf3iCTj0Ke6qpYuFu1apXtos/dl1VnzsGDB+1kGEf1pRBZDbQ/TZgwIeu2lpaWvN3Thfi9TkA+hEYgBdTKqACi0Jjrzp07ievmrDTXFaqwKGp1CbPF6uOPP7bXubOhdVDXrF9RqFSXo6Ouak1QiOPYRrWsurC4du1a2xoa5sxlTWqZOHFi1m1qRffuywqQ169fz9x/+/Zt2yqcJNeuXSt4ysJi71mF5c6e6lBfitTC6+2Ozu2eDjKbGtWJ0AikwP379/Pe/vjjj9tr78EVf6ewqBYsBRQF7rDDouMNg7nUOqfWRB3IRf/XlwC1mmloQZwoSLjlbcoRFkXPXeGwkKNHj9prtdBqSIArl0L24sWLQy1LGNws53wXUfBWQMy977nnniu4xI1aCfV7XupR0N/y/j21VOfKNylHX05ybwsymxrVhzGNQAroIFJTU9Ph9ra2Nnt9/vx5DgIeCmY/+clPTGtrqw1mQbqgu0KtYIW4gKTwpdCzYcMGG/Y1ySPf7NkoKJS9/fbbtvu93EsBFfoC5CgcivZnhS21nGlcYFyXKCo2JlXBTt3KCoDe2dRBbNq0yX7hcfuuHse1PrquZ9VPvm5o3a7Z02ph9JbF0QSbcr8nkEy0NAIpoQOIWhS9Y+CqZYxXZ4wYMcJeq47iMuvWjfdT12tcAqMojKiFURNdNJYwLhSIVF8KkHEMjMUouKmFr7PdzNo/NPHKS/WhCUmOPg/cepC59AUgX0ujAiPrMaIQQiOQEmvWrLHBUS1oOiBpjJ5bLmPkyJHRFi5mFDAUNtQ6pTqaNm2arbu4hMe4URhRi5m6hNU1reWAGPPWNepmLzRxKijtu4X2We3PGhahIJi0GeWIL0IjkCIKjm65lzfffDMzMeCpp56Kslix5cKjxhVqNqrCYznWtyw2QSOuk13yUXjUJBW1ziqQKDzmW2+yK7SUTjFp+QKk7t/OtOhpGSiFRYX2fGMW9ZhqXdT+TBczwkZoBFJCEwjUEqQAooO7rjUurra2lnPyBqAuToXHF154wY73CjM8uqBz+fLlrNt10Hfd5EmirlEFEoVHTR7SrPOwwqP2WwVpdYV7uQkwafgCpLpSK6Pfsjf5WnN1Jhi9rzXxReMYc4cx6DGLLbVTKsZCw4vQCKTEwoULzYIFCzLdVQo8GtPkt9gysukgqSCk8KixhQqPXe221mMqCCmUOu4x3azpJHLhUSFGdTZp0qRQ9jctKO2tK9Hjay3SpH8B0vtSdRakFdDNDs+lei80w1nd0hpKoFCZbyxjIe4c2BoT6cIs3drIxexpICW0cLRm6WoNt9OnT5v33nsvc0YNlE4HZF0U7vwmpaiVV7N+3cQEnU1GXbfqanVdzzrby0svvWT/P3DgQLN69Wqzbt26xIcgceExSEujtlGLq1sGSoFTQeqxxx7L1IXqXTP+tXyMzp2sVkataagZw0nmZqHnnn0l39lYtN+pTnUu8iCTohQw3WxsUajUz+5LifcMMLrO/VzwW3AdEEIjkBI6VaAuOgCrCy+3pQadU8osZgWcQhSI9Jq4Lm8Fy6SMZQyqlOejWcMKMoVofK6Ck74ETZkyJfGBRgFO4w1zA6LCm1tcOx89f7990H1ZyV22Rz8reCtsd3Y2vrdczc3NnXoMpAehEUgZWhYrr5TWwmp/fRQsg4ZLBZ04LT3UGQptGrtabB3GUtdozKXW2kK6eu5yVzZNvkl6cEfXERoBVB11kU6fPj3w9mlsFSyFW2onCDcWFP+rq6HNq9A4yK4G63zd453ZBulHaARQdRQAwzyYp51CIEEQALOnAQAA4IvQCAAAAF+ERgAAAPgiNAIAAMBXt/auzvUHgApyszi1BAj8/e53v7NLAj366KNRFyX2vvrqK3Pnzh3zL//yL1EXBYglQiMAAAB80T0NAAAAX6zTiKqlM3N88cUXURcDAKrWD37wg8ypNRF/hEZULQVGznIAAEAwhEZULZ3u7Ouvv466GABQtZ544omoi4ASMBEGAAAAvpgIAwAAAF+ERgAAAPgiNAIAAMAXoREAAAC+CI0AAADwRWgEAACAL0IjAAAAfBEaAQAA4IvQCAAAAF+ERgAAAPgiNAIAAMAXoREAAAC+CI0AAADwRWgEAACAL0IjAAAAfBEaAQAA4IvQCAAAAF+ERgAAAPgiNAIAAMAXoREAAAC+CI0AAADwRWgEAACAL0IjAAAAfBEaAQAA4IvQCAAAAF+ERgAAAPgiNCJjwIABZs6cOR1u3759u7396tWrgR+rW7duZvny5YFvz6Vt9He9ZdDvFrrkKzcAAAhPqkKjgoWCz8mTJwtuky9wKAyNHTs2MUFEz3PRokVm/fr1Rbcpdn8+n3/+uVm8eHGH2zdu3GiOHDlihgwZUvT3VfdO//79zdKlS+3/VZcqjwudM2bM8C3L4MGDzaxZs7Jua25uNu3t7R0uDQ0NWX8bAACEL1WhsV+/fjY8PPvsswW3yRc6Jk6caFasWNHh9s2bN1ew9MGoBW7Xrl3mzTfftD8r7Oa2ACosKnANGzYs8OMqaLe0tOQNhsePHzefffaZ72OsXLmyQ3hTefW4M2fONKdPn7YBzy98Oto2KIXMNLtw4YL9oqAAPnXq1KiLAwCoQo9EXYBiFGSee+65DrfX1dXZEBMkyFTKrVu3zMGDB838+fPN5cuXTe/evTvc/9Zbb5levXrZn69du2aamprM8OHDs7ZTyNLzUvhS694bb7xhJk+enLn/gw8+sKFQj6+/pQD58ccfm7a2NtOzZ0+7jcJuY2Nj0fDs5Naxa91TS6HK4bqIFVZyKVh7KRi+/fbbWY/tbpfDhw+XFATjRMF8x44dZvfu3ebixYuhPa72i507d5pnnnmmw77gpfu6d+9u3n//fTNhwoTQ/n4uvd41NTVZ+1whCrJq/R00aJBZs2ZNh/sPHDhgNm3aZEaMGGFaW1vttWt9zn0M3efez++8807W+yfINkHfXwCALmhPIBX7xIkTHW7XbQ8DZcmP9zAg5X28oFpaWtrXrVvX/jAQ2bLdvHmzwzYq18Mgl1XW3G0fHhjtdu42XT88gLfv378/63fcz+5xvY+h+2pra/OWIR89psrtpZ9dfahucul+ldVL26ls7rXx/qyLyun9WfdfuXIl83/v88t3cXXr/dm7vV6DctFz1eOrXnUJg567noPqRftOkNdLZdBzfRjAQimDo7/t9j3toypbMbpf22tfU3m8+7Wj10b7rvexct8Dufu36HG9dRxkm3yPne/9BQDomtiHxtxw4gJJbggpFDSCKBYa/Q6guWXNd6DSQT5f0NXB0Pv8cn+W+vr6TBD2C43uAFtKAC4WGlWWfI+VLzR6udfG+7vudXNUr/kCqaOA5C2Xfvb+TRegvOUtNz2vroZGFxb1OKUGXf2e6iysIOTCosqi6848bqHQ6N1vHYVj7/dU/az91ft3c98rQbYJ+v4CAHRN7Mc0qjtL4/aco0eP2gkqx44d6zAG8eFBw3Zdt+eMSVTXYrGZt5oAoi7afPf98Ic/7PKEmH379tnroUOHZt2uMYfq7hR15d65c8eMGjUqaxt1yWlMobrf1N2srkNt5+W66X7yk5/YsgbplvZz/fp1e92nT5+89xcaQ6ju9fHjx9vu7SVLlmQmGm3ZsiWrHm/cuFHS5JVPP/20w23qshS9zmE853LS66uxiNOmTbPdy+ridt32QWm4gvaH3KEPpdLroddi0qRJ9mcNq9D7rKuP67V3794O+7IbY6tua9HQCo1D9v5d152s3w+6TZD3FwCg62IfGkWTVFzgUEBws2+LzZL20sSL3IDpvSjgKHAWur+rE2J0sC/k0qVLNhAqDBdz9uxZe/3aa6/Z2cyisY0vvPCC/b8OxBrH5SbIdJVCmoKExvEFrWe3lI4bt6Zgr2Cnx1BAVNB0k3YUSjUWLshjunCpMWouzGvspfdnXbxfLuJCdadyaSyiXqvOhEVRvenLTVfGM7qwqOA6cuTIsoRF8dtf3PtBX4YKOXToUOBtgry/AABdl4jQqFYkBQcdfHXtZt8qeMR1WZxy0UF+7ty59nl/8803Zvr06fagqBDlJsjoZx24g66rqFZAb/jSz+PGjcv8PbXC+j2WC2wuMLqg537WtVqMNINaFEr9WhpVDnGTnrzBXjOyc5fgUUiNE7V0TZkyxX7p2bNnT6fCouPqTRNmcum19gtGmnmtVnOFRQVXTaIKOywCANItEaFRXPhQYHJ0EFYrg3cR6Gqg563WT9dKpG5ptUAqXGumqYKkupUVNILUjWY0e8NX7gxn/bxq1arMz2rR9FJoUTByr5FaB9VC5IKmu13l0wxq0evmgmnuY7mWRP1d97v6m4W6ygtROfRYUa3hqK5RdUkrOAZZ0LwY1ZtaxPv27Zt1u15vhfp79+4V/X21QCtka8iAvnDQ+gYAKFViQqMCiIKId0kX0fi5fOPdqoW6pW/fvm3mzZtnf66vr7d1otZYhUvXld0Vfl2iCnNuTKhaHF13oVq2XOuw4wKnXsvccYgKuHoctSiqJdFLLY1uHGS+7uk4dk3rNVC419CCu3fv2rJ3NjwWGs+o8X0K+n5rX+r3FMC1HJRaG8eMGUN4BACUJDGh8eWXX7ZhQoHIe+BVoMld+y1uVOZ8FPZqa2vtAT1fq5sobMjo0aM73KcD/k9/+lOzdu1a+xhqddK4N+8EBP3toGMSC3n66ac7nClGXc2Od8yoWhzF/Szbtm3LKo8CniYs5VLI1e/khkmV39WhrnPHnKpF0tsC7Wi/0P1Rr+ep+tE6hmfOnLE/ay3BUgJbofGMbhhCKcHPre+pOtHjKTzq9dC+E5ZCk5Jca6h7LfPtA+65aMH9oNsEeX853tNRVlsPBQB0VSJCoz7cdWDQwUgBQS1MTlfGiVWKC4RuMoujQfruwKeZn5oZnTuo/9y5c3kPnOJmS7vZpPfv38+7nV/XpR+FnqBncVFLoRZ0FhdWvSFCdaFWxnwhrxCNbUzqouBe3tY+tTrqNQ8SHr3jGTVu1c0+1uuvutF1Z+i9o/Co10It1GGGR+2zbqKKo31Z+7ib5az3dO5EFdWNuy/oNkHeX466+d2XDTdUAgAQTOxDo1pZ1MXqHRensV1dbT2rJJVZB1FvIFT5dQB95ZVX7M8KFBqX6D3Q6kCpSQs6K0xut2Rut7S4g7F3SR6FgtylSLqqWMtd+/+dllEtOQqQruXRcZNbSjlgq0u7M0vquDGNceu6ztdVXGx/dsMvNJ5R9aZWZ32RcjPn3VlQOssbHhcuXNjl8Zei1z037Gn/V0h2X0C07+o94A17WkVA7xXXsh5kmyDvLwBACMq2AmQICi0ArUWDu3pGmNzFwUtZxDuXW3janQVFCxvrZ+9janFiLc6s+7QYsq7zPQd3Zg53nW8BaD2W/la+M4Pob7hFsbWd/k6xRZsLnYWl2GLZfvXlXXjb1bP7v1ts2S3Qnu933bVbRNyVpdgZY/LVkytHZ84S5KUy6DXTYtHm/xazruSi0Xr9tAC36kOLXXuVuph7GNwZYdxZetwi2rmvgTs7ke5z74l8C9+7s7m4fTd33wqyTdD3l3cfqnS9AUDSxTo0BjnY5waJoGeBcfzObhJHxUKLO3jqEuSUcH6nEXTbeOu40OviQlru47nfzz1Iu5Dt/WLg/VsumBQrqytvOU8jGFd6zu50jN6zBAEAUA7d9E+5WzMrQd3Ymq2bkqdTMfnGHRbbVl3OuXWsrlK3RI53IXT3mqjrsNAaitqm0HhJdZN6Jznp76t7O3exdXV5dnUB9iTScj5aIL1nz552WR83thUAgHJITWgE4kZhNndNy0I0BrDUcZsuRGsWtN+EME2g0Sn5gtBYSc2wBgDAi9AIAAAAX7GfPQ0AAIDoERoBAADgi9AIAAAAX4RGAAAA+CI0AgAAwBehEQAAAL4IjQAAAPBFaAQAAIAvQiMAAAB8ERoBAADgi9AIAAAAX4RGAAAA+CI0AgAAwBehEQAAAL4IjQAAAPBFaAQAAIAvQiMAAAB8ERoBAADgi9AIAAAAX4RGAAAA+CI0AgAAwNf/B5TTfqsa9B05AAAAAElFTkSuQmCC" alt=" " />

容易发现这是一张仙人掌图(每条边最多属于一个环的无向连通图)

仙人掌图求最短路的常用处理方法是将它变成一棵树,原图里为环的点更改为该环上的点都指向该环的某个点A,然后边长就是该点到点A的最短路径。

再预处理每个点到顶点的距离dis

然后对于询问的两个点u,v,如果u,vLCA不在环上,那么距离就直接是dis[u]+dis[v]-2*dis[LCA(u,v)].

如果在环上,那么对于它们进入环的点Cu,Cv则有两种走法,一种是从Cu顺时针走向Cv,另一种是从Cu逆时针走向Cv两者取最小再加上dis[u]+dis[v]-dis[Cu]-dis[Cv]就可以了。

至于求环,我们可以运用Tarjan的思想。求LCA用倍增就可以了。值得注意的是,这里可以一个点在两个环里。

 #include <cstring>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cmath>
#define N 400005
using namespace std;
struct data{
int next,to,power;
}l1[N],l2[N];
int n,m,q,f1[N/],f2[N/],dfn[N/],num1,num2,head1[N],head2[N],zhan[N],top,up[N][],t,deep[N],dis[N/],belong[N],f[N/],visit[N/],host[N/],cnt;
int read(){
int x=,w=;
char c=;
for (c=getchar();c<''||c>'';c=getchar()) {if (c=='-') w=-;}
for (;c>=''&&c<='';c=getchar()) x=(x<<)+(x<<)+c-'';
return x*w;
}
void write(long long x){
if (!x) putchar('');else{
char s[];
int i,j=;
for (;x>;x/=) s[j++]=x%;
for (i=j-;i>=;i--) putchar(s[i]+);
}
putchar('\n');
}
void add1(int u,int v,int w){
num1++;
l1[num1].next=head1[u];
l1[num1].to=v;
l1[num1].power=w;
head1[u]=num1;
num1++;
l1[num1].next=head1[v];
l1[num1].to=u;
l1[num1].power=w;
head1[v]=num1;
}
void add2(int u,int v,int w){
num2++;
l2[num2].next=head2[u];
l2[num2].to=v;
l2[num2].power=w;
head2[u]=num2;
num2++;
l2[num2].next=head2[v];
l2[num2].to=u;
l2[num2].power=w;
head2[v]=num2;
}
void DFS(int x){
dfn[x]=++t;
for (int v=,i=head1[x];i;i=l1[i].next){
v=l1[i].to;
if ((v!=f[x])&&(!dfn[v])){
f[v]=x;
zhan[++top]=i;
DFS(v);
}
else if ((v!=f[x])&&(dfn[v]<dfn[x])){
long long sum=l1[i].power;
int p=top;
while ((l1[zhan[p]].to!=v)&&(p)){
f1[l1[zhan[p]].to]=sum;
sum+=l1[zhan[p]].power;
p--;
}
cnt++;
sum=l1[zhan[p+]].power;
for (int j=p+;j<=top;++j){
f2[l1[zhan[j]].to]=sum;
host[l1[zhan[j]].to]=v;
belong[l1[zhan[j]].to]=cnt;
add2(v,l1[zhan[j]].to,min(f1[l1[zhan[j]].to],f2[l1[zhan[j]].to]));
sum+=l1[zhan[j+]].power;
}
}
}
top--;
}
void build(int x){
visit[x]=;
for (int v=,i=head1[x];i;i=l1[i].next){
v=l1[i].to;
if ((!visit[v])&&(v!=f[x])){
if (((belong[x]!=belong[v])||((!belong[x])&&(!belong[v])))&&(host[x]!=v)&&(host[v]!=x))
add2(x,v,l1[i].power);
build(v);
}
}
}
void pre(int x){
deep[x]=deep[f[x]]+;
up[x][]=f[x];
for (int i=;i<=;++i)
up[x][i]=up[up[x][i-]][i-];
for (int v=,i=head2[x];i;i=l2[i].next){
v=l2[i].to;
if ((!deep[v])&&(v!=f[x])) {
f[v]=x;
dis[v]=dis[x]+l2[i].power;
pre(v);
}
}
}
int lca(int u,int v,int www){
int a=u,b=v;
if (deep[u]<deep[v]) swap(u,v);
for (int i=;i>=;--i)
if (deep[v]<=deep[up[u][i]])
u=up[u][i];
if (u==v) return (dis[a]-dis[u]+dis[b]-dis[v]);
for (int i=;i>=;--i)
if (up[v][i]!=up[u][i]){
v=up[v][i];
u =up[u][i];
}
if ((u!=v)&&(belong[u])&&(belong[u]==belong[v])) return (dis[a]-dis[u]+dis[b]-dis[v]+min(min(f1[u]+f2[v],f1[v]+f2[u]),min(abs(f1[u]-f1[v]),abs(f2[u]-f2[v]))));
else return (dis[a]-dis[up[u][]]+dis[b]-dis[up[v][]]);
}
int main(){
n=read(),m=read(),q=read();
t=,num1=,num2=,top=,cnt=;
for (int v=,u=,w=,i=;i<=m;++i){
u=read(),v=read(),w=read();
add1(u,v,w);
}
deep[]=-;
f[]=;
dis[]=;
DFS();
build();
f[]=;
pre();
for (int u=,v=,i=;i<=q;++i){
u=read(),v=read();
write(lca(u,v,i));
}
return ;
}

神奇的代码

拖欠了好几天的题终于A了QAQ

JZOJ.5287【NOIP2017模拟8.16】最短路的更多相关文章

  1. JZOJ.5286【NOIP2017模拟8.16】花花的森林

    Description

  2. JZOJ.5285【NOIP2017模拟8.16】排序

    Description

  3. [jzoj 5343] [NOIP2017模拟9.3A组] 健美猫 解题报告 (差分)

    题目链接: http://172.16.0.132/senior/#main/show/5343 题目: 题解: 记旋转i次之后的答案为$ans_i$,分别考虑每个元素对ans数组的贡献 若$s_i& ...

  4. [JZOJ 5908] [NOIP2018模拟10.16] 开荒(kaihuang)解题报告 (树状数组+思维)

    题目链接: https://jzoj.net/senior/#contest/show/2529/1 题目: 题目背景:尊者神高达作为一个萌新,在升级路上死亡无数次后被一只大黄叽带回了师门.他加入师门 ...

  5. [JZOJ 5909] [NOIP2018模拟10.16] 跑商(paoshang) 解题报告 (圆方树)

    题目链接: https://jzoj.net/senior/#contest/show/2529/2 题目: 题目背景:尊者神高达很穷,所以他需要跑商来赚钱题目描述:基三的地图可以看做 n 个城市,m ...

  6. JZOJ 5286. 【NOIP2017提高A组模拟8.16】花花的森林 (Standard IO)

    5286. [NOIP2017提高A组模拟8.16]花花的森林 (Standard IO) Time Limits: 1000 ms Memory Limits: 131072 KB Descript ...

  7. JZOJ 5236. 【NOIP2017模拟8.7A组】利普希茨

    5236. [NOIP2017模拟8.7A组]利普希茨 (File IO): input:lipschitz.in output:lipschitz.out Time Limits: 1000 ms ...

  8. JZOJ 【NOIP2017提高A组模拟9.14】捕老鼠

    JZOJ [NOIP2017提高A组模拟9.14]捕老鼠 题目 Description 为了加快社会主义现代化,建设新农村,农夫约(Farmer Jo)决定给农庄里的仓库灭灭鼠.于是,猫被农夫约派去捕 ...

  9. JZOJ 5246. 【NOIP2017模拟8.8A组】Trip(trip)

    5246. [NOIP2017模拟8.8A组]Trip(trip) (File IO): input:trip.in output:trip.out Time Limits: 1500 ms Memo ...

随机推荐

  1. excel导出功能优化

    先说说优化前,怎么做EXCEL导出功能的: 1. 先定义一个VO类,类中的字段按照EXCEL的顺序定义,并且该类只能用于EXCEL导出使用,不能随便修改. 2. 将查询到的结果集循环写入到这个VO类中 ...

  2. 预留端口避免占用ip_local_reserved_ports

    问题描述:  业务遇到这个情况,在重启服务时,出现1986端口被占用而无法启动,非得等该端口释放后才启动成功. 问题分析: 1986端口被该服务器上的客户端随机选取源端口给占用掉了. 解决方案:  使 ...

  3. 手动模拟输出json

    每次去写太麻烦,写一个样本,下次对照就好了 context.Response.Write("{\"UserName\":\""+HttpContext ...

  4. OSX下git diff/merge 可视化工具 P4Merge 环境配置步骤

    先下载 step1:首先,把要运行的命令放入外部包装脚本中,创建一个merge包装脚本,名字叫做extMerge,让它带参数调用P4Merge. $ cat >> /usr/local/b ...

  5. hadoop学习WordCount+Block+Split+Shuffle+Map+Reduce技术详解

    转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Spl ...

  6. Graying the black box: Understanding DQNs

    Zahavy, Tom, Nir Ben-Zrihem, and Shie Mannor. "Graying the black box: Understanding DQNs." ...

  7. c# combobox 绑定报错

    comboBoxPlanResult.DataSource =new BindingSource(o,null);comboBoxPlanResult.DisplayMember ="Key ...

  8. [精]Odoo 8.0深入浅出开发教程-模块开发基础

    參考资料点击这里. 构建Odoo模块 模块组成 业务对象 业务对象声明为Python类, 由Odoo自己主动加载. 数据文件 XML或CSV文件格式, 在当中声明了元数据(视图或工作流).配置数据(模 ...

  9. js 文件下载

    工程WebApi: 点击按钮执行的handler exportClick() { var profile = { content: this.state.profile, type: MappingT ...

  10. Kafka学习之一深度解析

    背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能 高吞吐 ...