Description

Input

Output

Sample Input

2 1 10 13

3

Sample Output

12

Source

看到t很小,想到用容斥原理,推一下发现n种数中选m个方法为C(n+m,m)。然后有的超过的就是先减掉b[i]+1,再算。由于n,m较大,p较小,故可用Lucas定理+乘法逆元搞。

把老师给的题解也放在这吧:

首先,看到有限制的只有15个,因此可以考虑使用容斥原理:Ans=全部没有限制的方案-有1个超过限制的方案数+有2个超过限制的方案数-有3个超过限制的方案数…。以此类推。我们先考虑没有限制的,在m组无限制的数中选n个的方案数,显然就是C(n+m-1,n),因为这道题是要求不超过m的方案数,也就是那么运用加法原理发现答案也就是C(n+0-1,0)+C(n+1-1,1)+C(n+2-1,2)+...+C(n+m-1,m)=C(n+m,m),然后考虑有限制的情况,有一个超过限制直接用总数减去(这个的限制+1)就是当前的总数,相当于强制要选限制+1个为空。然后只要DFS,记录到当前为止选了几个,答案要记是b[i]+1,判断加减,最后累加答案。最后,n、m过大,发现p是一个质数,所以可以用Lucas定理,Lucas(n,m,p)=Lucas(n/p,m/p,p)*C(n%p,m%p),其中C(n%p,m%p)求的时候要用到乘法逆元。

 program babylon(input,output);
var
t,i:longint;
ans,n,m,j,p:int64;
b:array[..]of int64;
a:array[..]of int64;
function pow(x,y:int64):int64;
begin
pow:=;
while y> do
begin
if y mod = then pow:=pow*x mod p;
x:=x*x mod p;
y:=y>>;
end;
end;
function z(n,m:int64):int64;
begin
if n<m then exit();
exit(a[n]*pow(a[n-m]*a[m] mod p,p-) mod p);
end;
function c(n,m:int64):int64;
begin
if n<m then exit();
c:=;
while (n>) and (m>) do
begin
c:=c*z(n mod p,m mod p) mod p;
n:=n div p;m:=m div p;
end;
end;
procedure dfs(k:longint;r,s:int64);
begin
if k=t+ then
begin
ans:=(ans+r*c(n+m-s,n)) mod p;
exit;
end;
dfs(k+,r,s);
dfs(k+,-r,s+b[k]+);
end;
begin
assign(input,'babylon.in');assign(output,'babylon.out');reset(input);rewrite(output);
readln(n,t,m,p);
for i:= to t do read(b[i]);
a[]:=;j:=;
while j<p do begin inc(j);a[j]:=a[j-]*j mod p; end;
ans:=;
dfs(,,);
if ans< then ans:=ans+p;write(ans);
close(input);close(output);
end.

bzoj1272 Gate Of Babylon(计数方法+Lucas定理+乘法逆元)的更多相关文章

  1. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

  2. 【BZOJ】2982: combination(lucas定理+乘法逆元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2982 少加了特判n<m return 0就wa了QAQ lucas定理:C(n, m)%p=( ...

  3. hihocoder #1698 假期计划 (排列组合+费马小定理+乘法逆元)

    Description 小Ho未来有一个为期N天的假期,他计划在假期中看A部电影,刷B道编程题.为了劳逸结合,他决定先拿出若干天看电影,再拿出若干天刷题,最后再留若干天看电影.(若干代指大于0)  每 ...

  4. 【BZOJ 1272】 1272: [BeiJingWc2008]Gate Of Babylon (容斥原理+卢卡斯定理)

    1272: [BeiJingWc2008]Gate Of Babylon Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 254  Solved: 12 ...

  5. 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...

  6. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  7. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

  9. bzoj1272 Gate Of Babylon

    [问题描述] [输入格式] [输出格式] [样例输入] 2 1 10 13 3 [样例输出] 12 [样例说明] [数据范围] 先容斥,考虑枚举哪些条件强制不满足,即直接选出b[i]+1件宝具 假设强 ...

随机推荐

  1. 20145226夏艺华 网络对抗技术 EXP7 网络欺诈技术防范

    20145226夏艺华 网络对抗技术 EXP7 网络欺诈技术防范 实践内容 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法. · 简单应用SET工具建立冒名网站 · ett ...

  2. debug 调试原理理解

    引言: 昨天,看了一篇文章,很受启发,记得之前听别的人远程调试过代码,觉得很神奇,在自己程序里打断点,连接远程服务器,开启调试后可以调用远程方法来看数据的输入和输出,不需要查找问题,重新部署,测试问题 ...

  3. 半个小时教你写一个装(bi)逼(she)之地图搜租房

    半个小时教你写一个装(bi)逼(she)之地图搜租房 首先需要一个Python3环境,怎么准备我就不多说了,实在不会的出门右转看一下廖雪峰老师的博客. HTML部分 代码来自:高德API+Python ...

  4. power sequece

  5. Scrapy爬豆瓣电影Top250并存入MySQL数据库

    d:进入D盘 scrapy startproject douban创建豆瓣项目 cd douban进入项目 scrapy genspider douban_spider movie.douban.co ...

  6. sql 命令使用简单记录

    半个月前就想记下用过的SQL命令的!!!     主题: 按时间查询: https://blog.csdn.net/hejpyes/article/details/41863349   左关联: se ...

  7. Unity ScriptableObject自定义属性显示

    1. 继承Editor,重写OnInspectorGUI方法 Editor官方文档 需求 将TestClass中intData属性和stringData按指定格式显示. 实现 定义一个测试类TestC ...

  8. Mybatis-Plus的填坑之路 - Lynwood/wunian7yulian

    目录 Mybatis-Plus 我来填坑~ 目录 一.简单介绍 官方说明 : 成绩: 最新版本: 开发层面MyBatis-Plus特色 Mybatis-Plus中的Plus 二.MP的特性 三.MP框 ...

  9. while read读取文本内容

    读取文件给 while 循环 方式一: exec <FILE while read line do cmd done 方式二: cat FILE_PATH |while read line do ...

  10. 用 Python 构建一个极小的区块链

    虽然有些人认为区块链是一个早晚会出现问题的解决方案,但是毫无疑问,这个创新技术是一个计算机技术上的奇迹.那么,究竟什么是区块链呢? 区块链 以比特币(Bitcoin)或其它加密货币按时间顺序公开地记录 ...