转自:http://www.aboutyun.com/thread-8917-1-1.html

问题导读
1.什么是flume
2.flume的官方网站在哪里?
3.flume有哪些术语?
4.如何配置flume数据源码?

  一、什么是Flume?
  flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 cloudera。但随着 FLume 功能的扩展,Flume OG 代码工程臃肿、核心组件设计不合理、核心配置不标准等缺点暴露出来,尤其是在 Flume OG 的最后一个发行版本 0.94.0 中,日志传输不稳定的现象尤为严重,为了解决这些问题,2011 年 10 月 22 号,cloudera 完成了 Flume-728,对 Flume 进行了里程碑式的改动:重构核心组件、核心配置以及代码架构,重构后的版本统称为 Flume NG(next generation);改动的另一原因是将 Flume 纳入 apache 旗下,cloudera Flume 改名为 Apache Flume。

flume的特点:
  flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。
  flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。

flume的可靠性 
  当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Besteffort(数据发送到接收方后,不会进行确认)。

flume的可恢复性:
  还是靠Channel。推荐使用FileChannel,事件持久化在本地文件系统里(性能较差)。

  flume的一些核心概念:

  • Agent        使用JVM 运行Flume。每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks。
  • Client        生产数据,运行在一个独立的线程。
  • Source        从Client收集数据,传递给Channel。
  • Sink        从Channel收集数据,运行在一个独立线程。
  • Channel        连接 sources 和 sinks ,这个有点像一个队列。
  • Events        可以是日志记录、 avro 对象等。

  Flume以agent为最小的独立运行单位。一个agent就是一个JVM。单agent由Source、Sink和Channel三大组件构成,如下图:

<ignore_js_op>

  值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。Flume支持用户建立多级流,也就是说,多个agent可以协同工作,并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes,这也正是NB之处。如下图所示:

<ignore_js_op>

  二、flume的官方网站在哪里?
  http://flume.apache.org/

  三、在哪里下载?
  http://www.apache.org/dyn/closer.cgi/flume/1.5.0/apache-flume-1.5.0-bin.tar.gz

  四、如何安装?
    1)将下载的flume包,解压到/home/hadoop目录中,你就已经完成了50%:)简单吧
    2)修改 flume-env.sh 配置文件,主要是JAVA_HOME变量设置

  1. root@m1:/home/hadoop/flume-1.5.0-bin# cp conf/flume-env.sh.template conf/flume-env.sh
  2. root@m1:/home/hadoop/flume-1.5.0-bin# vi conf/flume-env.sh
  3. # Licensed to the Apache Software Foundation (ASF) under one
  4. # or more contributor license agreements.  See the NOTICE file
  5. # distributed with this work for additional information
  6. # regarding copyright ownership.  The ASF licenses this file
  7. # to you under the Apache License, Version 2.0 (the
  8. # "License"); you may not use this file except in compliance
  9. # with the License.  You may obtain a copy of the License at
  10. #
  11. #     http://www.apache.org/licenses/LICENSE-2.0
  12. #
  13. # Unless required by applicable law or agreed to in writing, software
  14. # distributed under the License is distributed on an "AS IS" BASIS,
  15. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  16. # See the License for the specific language governing permissions and
  17. # limitations under the License.
  18. # If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced
  19. # during Flume startup.
  20. # Enviroment variables can be set here.
  21. JAVA_HOME=/usr/lib/jvm/java-7-oracle
  22. # Give Flume more memory and pre-allocate, enable remote monitoring via JMX
  23. #JAVA_OPTS="-Xms100m -Xmx200m -Dcom.sun.management.jmxremote"
  24. # Note that the Flume conf directory is always included in the classpath.
  25. #FLUME_CLASSPATH=""

复制代码

3)验证是否安装成功

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng version
  2. Flume 1.5.0
  3. Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git
  4. Revision: 8633220df808c4cd0c13d1cf0320454a94f1ea97
  5. Compiled by hshreedharan on Wed May  7 14:49:18 PDT 2014
  6. From source with checksum a01fe726e4380ba0c9f7a7d222db961f
  7. root@m1:/home/hadoop#

复制代码

    出现上面的信息,表示安装成功了

  五、flume的案例
    1)案例1:Avro
    Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制。
      a)创建agent配置文件

  1. root@m1:/home/hadoop#vi /home/hadoop/flume-1.5.0-bin/conf/avro.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = avro
  7. a1.sources.r1.channels = c1
  8. a1.sources.r1.bind = 0.0.0.0
  9. a1.sources.r1.port = 4141
  10. # Describe the sink
  11. a1.sinks.k1.type = logger
  12. # Use a channel which buffers events in memory
  13. a1.channels.c1.type = memory
  14. a1.channels.c1.capacity = 1000
  15. a1.channels.c1.transactionCapacity = 100
  16. # Bind the source and sink to the channel
  17. a1.sources.r1.channels = c1
  18. a1.sinks.k1.channel = c1

复制代码

      b)启动flume agent a1

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      c)创建指定文件

  1. root@m1:/home/hadoop# echo "hello world" > /home/hadoop/flume-1.5.0-bin/log.00

复制代码

      d)使用avro-client发送文件

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /home/hadoop/flume-1.5.0-bin/log.00

复制代码

      d)使用avro-client发送文件

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng avro-client -c . -H m1 -p 4141 -F /

复制代码

      f)在m1的控制台,可以看到以下信息,注意最后一行:

  1. root@m1:/home/hadoop/flume-1.5.0-bin/conf# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/avro.conf -n a1 -Dflume.root.logger=INFO,console
  2. Info: Sourcing environment configuration script /home/hadoop/flume-1.5.0-bin/conf/flume-env.sh
  3. Info: Including Hadoop libraries found via (/home/hadoop/hadoop-2.2.0/bin/hadoop) for HDFS access
  4. Info: Excluding /home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-api-1.7.5.jar from classpath
  5. Info: Excluding /home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar from classpath
  6. ...
  7. 2014-08-10 10:43:25,112 (New I/O  worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] UNBOUND
  8. 2014-08-10 10:43:25,112 (New I/O  worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.handleUpstream(NettyServer.java:171)] [id: 0x92464c4f, /192.168.1.50:59850 :> /192.168.1.50:4141] CLOSED
  9. 2014-08-10 10:43:25,112 (New I/O  worker #1) [INFO - org.apache.avro.ipc.NettyServer$NettyServerAvroHandler.channelClosed(NettyServer.java:209)] Connection to /192.168.1.50:59850 disconnected.
  10. 2014-08-10 10:43:26,718 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 6C 64                hello world }

复制代码

    2)案例2:Spool
    Spool监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点:
    1) 拷贝到spool目录下的文件不可以再打开编辑。
    2) spool目录下不可包含相应的子目录

      a)创建agent配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/spool.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = spooldir
  7. a1.sources.r1.channels = c1
  8. a1.sources.r1.spoolDir = /home/hadoop/flume-1.5.0-bin/logs
  9. a1.sources.r1.fileHeader = true
  10. # Describe the sink
  11. a1.sinks.k1.type = logger
  12. # Use a channel which buffers events in memory
  13. a1.channels.c1.type = memory
  14. a1.channels.c1.capacity = 1000
  15. a1.channels.c1.transactionCapacity = 100
  16. # Bind the source and sink to the channel
  17. a1.sources.r1.channels = c1
  18. a1.sinks.k1.channel = c1

复制代码

      b)启动flume agent a1

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/spool.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      c)追加文件到/home/hadoop/flume-1.5.0-bin/logs目录

  1. root@m1:/home/hadoop# echo "spool test1" > /home/hadoop/flume-1.5.0-bin/logs/spool_text.log

复制代码

     d)在m1的控制台,可以看到以下相关信息:

  1. 14/08/10 11:37:13 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.
  2. 14/08/10 11:37:13 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.
  3. 14/08/10 11:37:14 INFO avro.ReliableSpoolingFileEventReader: Preparing to move file /home/hadoop/flume-1.5.0-bin/logs/spool_text.log to /home/hadoop/flume-1.5.0-bin/logs/spool_text.log.COMPLETED
  4. 14/08/10 11:37:14 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.
  5. 14/08/10 11:37:14 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.
  6. 14/08/10 11:37:14 INFO sink.LoggerSink: Event: { headers:{file=/home/hadoop/flume-1.5.0-bin/logs/spool_text.log} body: 73 70 6F 6F 6C 20 74 65 73 74 31                spool test1 }
  7. 14/08/10 11:37:15 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.
  8. 14/08/10 11:37:15 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.
  9. 14/08/10 11:37:16 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.
  10. 14/08/10 11:37:16 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.
  11. 14/08/10 11:37:17 INFO source.SpoolDirectorySource: Spooling Directory Source runner has shutdown.

复制代码

    3)案例3:Exec
    EXEC执行一个给定的命令获得输出的源,如果要使用tail命令,必选使得file足够大才能看到输出内容

      a)创建agent配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = exec
  7. a1.sources.r1.channels = c1
  8. a1.sources.r1.command = tail -F /home/hadoop/flume-1.5.0-bin/log_exec_tail
  9. # Describe the sink
  10. a1.sinks.k1.type = logger
  11. # Use a channel which buffers events in memory
  12. a1.channels.c1.type = memory
  13. a1.channels.c1.capacity = 1000
  14. a1.channels.c1.transactionCapacity = 100
  15. # Bind the source and sink to the channel
  16. a1.sources.r1.channels = c1
  17. a1.sinks.k1.channel = c1

复制代码

      b)启动flume agent a1

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/exec_tail.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      c)生成足够多的内容在文件里

  1. root@m1:/home/hadoop# for i in {1..100};do echo "exec tail$i" >> /home/hadoop/flume-1.5.0-bin/log_

复制代码

      e)在m1的控制台,可以看到以下信息:

  1. 2014-08-10 10:59:25,513 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74       exec tail test }
  2. 2014-08-10 10:59:34,535 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 20 74 65 73 74       exec tail test }
  3. 2014-08-10 11:01:40,557 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31                   exec tail1 }
  4. 2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 32                   exec tail2 }
  5. 2014-08-10 11:01:41,180 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 33                   exec tail3 }
  6. 2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 34                   exec tail4 }
  7. 2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 35                   exec tail5 }
  8. 2014-08-10 11:01:41,181 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 36                   exec tail6 }
  9. ....
  10. ....
  11. ....
  12. 2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 36                exec tail96 }
  13. 2014-08-10 11:01:51,550 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 37                exec tail97 }
  14. 2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 38                exec tail98 }
  15. 2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 39                exec tail99 }
  16. 2014-08-10 11:01:51,551 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 30 30             exec tail100 }

复制代码

    4)案例4:Syslogtcp
    Syslogtcp监听TCP的端口做为数据源

      a)创建agent配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = syslogtcp
  7. a1.sources.r1.port = 5140
  8. a1.sources.r1.host = localhost
  9. a1.sources.r1.channels = c1
  10. # Describe the sink
  11. a1.sinks.k1.type = logger
  12. # Use a channel which buffers events in memory
  13. a1.channels.c1.type = memory
  14. a1.channels.c1.capacity = 1000
  15. a1.channels.c1.transactionCapacity = 100
  16. # Bind the source and sink to the channel
  17. a1.sources.r1.channels = c1
  18. a1.sinks.k1.channel = c1

复制代码

      b)启动flume agent a1

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      c)测试产生syslog

  1. root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5140

复制代码

      d)在m1的控制台,可以看到以下信息:

  1. 14/08/10 11:41:45 INFO node.PollingPropertiesFileConfigurationProvider: Reloading configuration file:/home/hadoop/flume-1.5.0-bin/conf/syslog_tcp.conf
  2. 14/08/10 11:41:45 INFO conf.FlumeConfiguration: Added sinks: k1 Agent: a1
  3. 14/08/10 11:41:45 INFO conf.FlumeConfiguration: Processing:k1
  4. 14/08/10 11:41:45 INFO conf.FlumeConfiguration: Processing:k1
  5. 14/08/10 11:41:45 INFO conf.FlumeConfiguration: Post-validation flume configuration contains configuration for agents: [a1]
  6. 14/08/10 11:41:45 INFO node.AbstractConfigurationProvider: Creating channels
  7. 14/08/10 11:41:45 INFO channel.DefaultChannelFactory: Creating instance of channel c1 type memory
  8. 14/08/10 11:41:45 INFO node.AbstractConfigurationProvider: Created channel c1
  9. 14/08/10 11:41:45 INFO source.DefaultSourceFactory: Creating instance of source r1, type syslogtcp
  10. 14/08/10 11:41:45 INFO sink.DefaultSinkFactory: Creating instance of sink: k1, type: logger
  11. 14/08/10 11:41:45 INFO node.AbstractConfigurationProvider: Channel c1 connected to [r1, k1]
  12. 14/08/10 11:41:45 INFO node.Application: Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.SyslogTcpSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@6538b14 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }
  13. 14/08/10 11:41:45 INFO node.Application: Starting Channel c1
  14. 14/08/10 11:41:45 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.
  15. 14/08/10 11:41:45 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started
  16. 14/08/10 11:41:45 INFO node.Application: Starting Sink k1
  17. 14/08/10 11:41:45 INFO node.Application: Starting Source r1
  18. 14/08/10 11:41:45 INFO source.SyslogTcpSource: Syslog TCP Source starting...
  19. 14/08/10 11:42:15 WARN source.SyslogUtils: Event created from Invalid Syslog data.
  20. 14/08/10 11:42:15 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }

复制代码

    5)案例5:JSONHandler
      a)创建agent配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/post_json.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = org.apache.flume.source.http.HTTPSource
  7. a1.sources.r1.port = 8888
  8. a1.sources.r1.channels = c1
  9. # Describe the sink
  10. a1.sinks.k1.type = logger
  11. # Use a channel which buffers events in memory
  12. a1.channels.c1.type = memory
  13. a1.channels.c1.capacity = 1000
  14. a1.channels.c1.transactionCapacity = 100
  15. # Bind the source and sink to the channel
  16. a1.sources.r1.channels = c1
  17. a1.sinks.k1.channel = c1

复制代码

      b)启动flume agent a1

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/post_json.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      c)生成JSON 格式的POST request

  1. root@m1:/home/hadoop# curl -X POST -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888

复制代码

      d)在m1的控制台,可以看到以下信息:

  1. 14/08/10 11:49:59 INFO node.Application: Starting Channel c1
  2. 14/08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.
  3. 14/08/10 11:49:59 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started
  4. 14/08/10 11:49:59 INFO node.Application: Starting Sink k1
  5. 14/08/10 11:49:59 INFO node.Application: Starting Source r1
  6. 14/08/10 11:49:59 INFO mortbay.log: Logging to org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog
  7. 14/08/10 11:49:59 INFO mortbay.log: jetty-6.1.26
  8. 14/08/10 11:50:00 INFO mortbay.log: Started SelectChannelConnector@0.0.0.0:8888
  9. 14/08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.
  10. 14/08/10 11:50:00 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started
  11. 14/08/10 12:14:32 INFO sink.LoggerSink: Event: { headers:{b=b1, a=a1} body: 69 64 6F 61 6C 6C 2E 6F 72 67 5F 62 6F 64 79    idoall.org_body }

复制代码

    6)案例6:Hadoop sink
      a)创建agent配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = syslogtcp
  7. a1.sources.r1.port = 5140
  8. a1.sources.r1.host = localhost
  9. a1.sources.r1.channels = c1
  10. # Describe the sink
  11. a1.sinks.k1.type = hdfs
  12. a1.sinks.k1.channel = c1
  13. a1.sinks.k1.hdfs.path = hdfs://m1:9000/user/flume/syslogtcp
  14. a1.sinks.k1.hdfs.filePrefix = Syslog
  15. a1.sinks.k1.hdfs.round = true
  16. a1.sinks.k1.hdfs.roundValue = 10
  17. a1.sinks.k1.hdfs.roundUnit = minute
  18. # Use a channel which buffers events in memory
  19. a1.channels.c1.type = memory
  20. a1.channels.c1.capacity = 1000
  21. a1.channels.c1.transactionCapacity = 100
  22. # Bind the source and sink to the channel
  23. a1.sources.r1.channels = c1
  24. a1.sinks.k1.channel = c1

复制代码

      b)启动flume agent a1

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hdfs_sink.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      c)测试产生syslog

  1. root@m1:/home/hadoop# echo "hello idoall flume -> hadoop testing one" | nc localhost 5140

复制代码

      d)在m1的控制台,可以看到以下信息:

  1. 14/08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.
  2. 14/08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: CHANNEL, name: c1 started
  3. 14/08/10 12:20:39 INFO node.Application: Starting Sink k1
  4. 14/08/10 12:20:39 INFO node.Application: Starting Source r1
  5. 14/08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SINK, name: k1: Successfully registered new MBean.
  6. 14/08/10 12:20:39 INFO instrumentation.MonitoredCounterGroup: Component type: SINK, name: k1 started
  7. 14/08/10 12:20:39 INFO source.SyslogTcpSource: Syslog TCP Source starting...
  8. 14/08/10 12:21:46 WARN source.SyslogUtils: Event created from Invalid Syslog data.
  9. 14/08/10 12:21:49 INFO hdfs.HDFSSequenceFile: writeFormat = Writable, UseRawLocalFileSystem = false
  10. 14/08/10 12:21:49 INFO hdfs.BucketWriter: Creating hdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp
  11. 14/08/10 12:22:20 INFO hdfs.BucketWriter: Closing hdfs://m1:9000/user/flume/syslogtcp//Syslog.1407644509504.tmp
  12. 14/08/10 12:22:20 INFO hdfs.BucketWriter: Close tries incremented
  13. 14/08/10 12:22:20 INFO hdfs.BucketWriter: Renaming hdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504.tmp to hdfs://m1:9000/user/flume/syslogtcp/Syslog.1407644509504
  14. 14/08/10 12:22:20 INFO hdfs.HDFSEventSink: Writer callback called.

复制代码

      e)在m1上再打开一个窗口,去hadoop上检查文件是否生成

  1. root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -ls /user/flume/syslogtcp
  2. Found 1 items
  3. -rw-r--r--   3 root supergroup        155 2014-08-10 12:22 /user/flume/syslogtcp/Syslog.1407644509504
  4. root@m1:/home/hadoop# /home/hadoop/hadoop-2.2.0/bin/hadoop fs -cat /user/flume/syslogtcp/Syslog.1407644509504
  5. SEQ!org.apache.hadoop.io.LongWritable"org.apache.hadoop.io.BytesWritable^;>Gv$hello idoall flume -> hadoop testing one

复制代码

    7)案例7:File Roll Sink
      a)创建agent配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = syslogtcp
  7. a1.sources.r1.port = 5555
  8. a1.sources.r1.host = localhost
  9. a1.sources.r1.channels = c1
  10. # Describe the sink
  11. a1.sinks.k1.type = file_roll
  12. a1.sinks.k1.sink.directory = /home/hadoop/flume-1.5.0-bin/logs
  13. # Use a channel which buffers events in memory
  14. a1.channels.c1.type = memory
  15. a1.channels.c1.capacity = 1000
  16. a1.channels.c1.transactionCapacity = 100
  17. # Bind the source and sink to the channel
  18. a1.sources.r1.channels = c1
  19. a1.sinks.k1.channel = c1

复制代码

      b)启动flume agent a1

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/file_roll.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      c)测试产生log

  1. root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5555
  2. root@m1:/home/hadoop# echo "hello idoall.org syslog 2" | nc localhost 5555

复制代码

      d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件

  1. root@m1:/home/hadoop# ll /home/hadoop/flume-1.5.0-bin/logs
  2. 总用量 272
  3. drwxr-xr-x 3 root root   4096 Aug 10 12:50 ./
  4. drwxr-xr-x 9 root root   4096 Aug 10 10:59 ../
  5. -rw-r--r-- 1 root root     50 Aug 10 12:49 1407646164782-1
  6. -rw-r--r-- 1 root root      0 Aug 10 12:49 1407646164782-2
  7. -rw-r--r-- 1 root root      0 Aug 10 12:50 1407646164782-3
  8. root@m1:/home/hadoop# cat /home/hadoop/flume-1.5.0-bin/logs/1407646164782-1 /home/hadoop/flume-1.5.0-bin/logs/1407646164782-2
  9. hello idoall.org syslog
  10. hello idoall.org syslog 2

复制代码

    8)案例8:Replicating Channel Selector
    Flume支持Fan out流从一个源到多个通道。有两种模式的Fan out,分别是复制和复用。在复制的情况下,流的事件被发送到所有的配置通道。在复用的情况下,事件被发送到可用的渠道中的一个子集。Fan out流需要指定源和Fan out通道的规则。

    这次我们需要用到m1,m2两台机器

      a)在m1创建replicating_Channel_Selector配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf
  2. a1.sources = r1
  3. a1.sinks = k1 k2
  4. a1.channels = c1 c2
  5. # Describe/configure the source
  6. a1.sources.r1.type = syslogtcp
  7. a1.sources.r1.port = 5140
  8. a1.sources.r1.host = localhost
  9. a1.sources.r1.channels = c1 c2
  10. a1.sources.r1.selector.type = replicating
  11. # Describe the sink
  12. a1.sinks.k1.type = avro
  13. a1.sinks.k1.channel = c1
  14. a1.sinks.k1.hostname = m1
  15. a1.sinks.k1.port = 5555
  16. a1.sinks.k2.type = avro
  17. a1.sinks.k2.channel = c2
  18. a1.sinks.k2.hostname = m2
  19. a1.sinks.k2.port = 5555
  20. # Use a channel which buffers events in memory
  21. a1.channels.c1.type = memory
  22. a1.channels.c1.capacity = 1000
  23. a1.channels.c1.transactionCapacity = 100
  24. a1.channels.c2.type = memory
  25. a1.channels.c2.capacity = 1000
  26. a1.channels.c2.transactionCapacity = 100

复制代码

      b)在m1创建replicating_Channel_Selector_avro配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = avro
  7. a1.sources.r1.channels = c1
  8. a1.sources.r1.bind = 0.0.0.0
  9. a1.sources.r1.port = 5555
  10. # Describe the sink
  11. a1.sinks.k1.type = logger
  12. # Use a channel which buffers events in memory
  13. a1.channels.c1.type = memory
  14. a1.channels.c1.capacity = 1000
  15. a1.channels.c1.transactionCapacity = 100
  16. # Bind the source and sink to the channel
  17. a1.sources.r1.channels = c1
  18. a1.sinks.k1.channel = c1

复制代码

      c)在m1上将2个配置文件复制到m2上一份

  1. root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf
  2. root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf

复制代码

      d)打开4个窗口,在m1和m2上同时启动两个flume agent

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console
  2. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/replicating_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      e)然后在m1或m2的任意一台机器上,测试产生syslog

  1. root@m1:/home/hadoop# echo "hello idoall.org syslog" | nc localhost 5140

复制代码

      f)在m1和m2的sink窗口,分别可以看到以下信息,这说明信息得到了同步:

  1. 14/08/10 14:08:18 INFO ipc.NettyServer: Connection to /192.168.1.51:46844 disconnected.
  2. 14/08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] OPEN
  3. 14/08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555
  4. 14/08/10 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35873
  5. 14/08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] OPEN
  6. 14/08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555
  7. 14/08/10 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46858
  8. 14/08/10 14:09:20 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }

复制代码

    9)案例9:Multiplexing Channel Selector
      a)在m1创建Multiplexing_Channel_Selector配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf
  2. a1.sources = r1
  3. a1.sinks = k1 k2
  4. a1.channels = c1 c2
  5. # Describe/configure the source
  6. a1.sources.r1.type = org.apache.flume.source.http.HTTPSource
  7. a1.sources.r1.port = 5140
  8. a1.sources.r1.channels = c1 c2
  9. a1.sources.r1.selector.type = multiplexing
  10. a1.sources.r1.selector.header = type
  11. #映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。
  12. a1.sources.r1.selector.mapping.baidu = c1
  13. a1.sources.r1.selector.mapping.ali = c2
  14. a1.sources.r1.selector.default = c1
  15. # Describe the sink
  16. a1.sinks.k1.type = avro
  17. a1.sinks.k1.channel = c1
  18. a1.sinks.k1.hostname = m1
  19. a1.sinks.k1.port = 5555
  20. a1.sinks.k2.type = avro
  21. a1.sinks.k2.channel = c2
  22. a1.sinks.k2.hostname = m2
  23. a1.sinks.k2.port = 5555
  24. # Use a channel which buffers events in memory
  25. a1.channels.c1.type = memory
  26. a1.channels.c1.capacity = 1000
  27. a1.channels.c1.transactionCapacity = 100
  28. a1.channels.c2.type = memory
  29. a1.channels.c2.capacity = 1000
  30. a1.channels.c2.transactionCapacity = 100

复制代码

      b)在m1创建Multiplexing_Channel_Selector_avro配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = avro
  7. a1.sources.r1.channels = c1
  8. a1.sources.r1.bind = 0.0.0.0
  9. a1.sources.r1.port = 5555
  10. # Describe the sink
  11. a1.sinks.k1.type = logger
  12. # Use a channel which buffers events in memory
  13. a1.channels.c1.type = memory
  14. a1.channels.c1.capacity = 1000
  15. a1.channels.c1.transactionCapacity = 100
  16. # Bind the source and sink to the channel
  17. a1.sources.r1.channels = c1
  18. a1.sinks.k1.channel = c1

复制代码

      c)将2个配置文件复制到m2上一份

  1. root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf  root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf
  2. root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf

复制代码

      d)打开4个窗口,在m1和m2上同时启动两个flume agent

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console
  2. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Multiplexing_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      e)然后在m1或m2的任意一台机器上,测试产生syslog

  1. root@m1:/home/hadoop# curl -X POST -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]' http://localhost:5140

复制代码

     f)在m1的sink窗口,可以看到以下信息:

  1. 14/08/10 14:32:21 INFO node.Application: Starting Sink k1
  2. 14/08/10 14:32:21 INFO node.Application: Starting Source r1
  3. 14/08/10 14:32:21 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }...
  4. 14/08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.
  5. 14/08/10 14:32:21 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started
  6. 14/08/10 14:32:21 INFO source.AvroSource: Avro source r1 started.
  7. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] OPEN
  8. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555
  9. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35916
  10. 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] OPEN
  11. 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555
  12. 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46945
  13. 14/08/10 14:34:11 INFO sink.LoggerSink: Event: { headers:{type=baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31             idoall_TEST1 }
  14. 14/08/10 14:34:57 INFO sink.LoggerSink: Event: { headers:{type=qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33             idoall_TEST3 }

复制代码

     g)在m2的sink窗口,可以看到以下信息:

  1. 14/08/10 14:32:27 INFO node.Application: Starting Sink k1
  2. 14/08/10 14:32:27 INFO node.Application: Starting Source r1
  3. 14/08/10 14:32:27 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }...
  4. 14/08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.
  5. 14/08/10 14:32:27 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started
  6. 14/08/10 14:32:27 INFO source.AvroSource: Avro source r1 started.
  7. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] OPEN
  8. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555
  9. 14/08/10 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38104
  10. 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] OPEN
  11. 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555
  12. 14/08/10 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48599
  13. 14/08/10 14:34:33 INFO sink.LoggerSink: Event: { headers:{type=ali} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 32             idoall_TEST2 }

复制代码

    可以看到,根据header中不同的条件分布到不同的channel上

    10)案例10:Flume Sink Processors
    failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink。

      a)在m1创建Flume_Sink_Processors配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf
  2. a1.sources = r1
  3. a1.sinks = k1 k2
  4. a1.channels = c1 c2
  5. #这个是配置failover的关键,需要有一个sink group
  6. a1.sinkgroups = g1
  7. a1.sinkgroups.g1.sinks = k1 k2
  8. #处理的类型是failover
  9. a1.sinkgroups.g1.processor.type = failover
  10. #优先级,数字越大优先级越高,每个sink的优先级必须不相同
  11. a1.sinkgroups.g1.processor.priority.k1 = 5
  12. a1.sinkgroups.g1.processor.priority.k2 = 10
  13. #设置为10秒,当然可以根据你的实际状况更改成更快或者很慢
  14. a1.sinkgroups.g1.processor.maxpenalty = 10000
  15. # Describe/configure the source
  16. a1.sources.r1.type = syslogtcp
  17. a1.sources.r1.port = 5140
  18. a1.sources.r1.channels = c1 c2
  19. a1.sources.r1.selector.type = replicating
  20. # Describe the sink
  21. a1.sinks.k1.type = avro
  22. a1.sinks.k1.channel = c1
  23. a1.sinks.k1.hostname = m1
  24. a1.sinks.k1.port = 5555
  25. a1.sinks.k2.type = avro
  26. a1.sinks.k2.channel = c2
  27. a1.sinks.k2.hostname = m2
  28. a1.sinks.k2.port = 5555
  29. # Use a channel which buffers events in memory
  30. a1.channels.c1.type = memory
  31. a1.channels.c1.capacity = 1000
  32. a1.channels.c1.transactionCapacity = 100
  33. a1.channels.c2.type = memory
  34. a1.channels.c2.capacity = 1000
  35. a1.channels.c2.transactionCapacity = 100

复制代码

      b)在m1创建Flume_Sink_Processors_avro配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = avro
  7. a1.sources.r1.channels = c1
  8. a1.sources.r1.bind = 0.0.0.0
  9. a1.sources.r1.port = 5555
  10. # Describe the sink
  11. a1.sinks.k1.type = logger
  12. # Use a channel which buffers events in memory
  13. a1.channels.c1.type = memory
  14. a1.channels.c1.capacity = 1000
  15. a1.channels.c1.transactionCapacity = 100
  16. # Bind the source and sink to the channel
  17. a1.sources.r1.channels = c1
  18. a1.sinks.k1.channel = c1

复制代码

      c)将2个配置文件复制到m2上一份

  1. root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf  root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf
  2. root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf

复制代码

      d)打开4个窗口,在m1和m2上同时启动两个flume agent

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
  2. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      e)然后在m1或m2的任意一台机器上,测试产生log

  1. root@m1:/home/hadoop# echo "idoall.org test1 failover" | nc localhost 5140

复制代码

      f)因为m2的优先级高,所以在m2的sink窗口,可以看到以下信息,而m1没有:

  1. 14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:48692 disconnected.
  2. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] OPEN
  3. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555
  4. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48704
  5. 14/08/10 15:03:26 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }

复制代码

      g)这时我们停止掉m2机器上的sink(ctrl+c),再次输出测试数据:

  1. root@m1:/home/hadoop# echo "idoall.org test2 failover" | nc localhost 5140

复制代码

      h)可以在m1的sink窗口,看到读取到了刚才发送的两条测试数据:

  1. 14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:47036 disconnected.
  2. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] OPEN
  3. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555
  4. 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:47048
  5. 14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
  6. 14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }

复制代码

      i)我们再在m2的sink窗口中,启动sink:

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      j)输入两批测试数据:

  1. root@m1:/home/hadoop# echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140

复制代码

     k)在m2的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到m2上:

  1. 14/08/10 15:09:47 INFO node.Application: Starting Sink k1
  2. 14/08/10 15:09:47 INFO node.Application: Starting Source r1
  3. 14/08/10 15:09:47 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }...
  4. 14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.
  5. 14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started
  6. 14/08/10 15:09:47 INFO source.AvroSource: Avro source r1 started.
  7. 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] OPEN
  8. 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555
  9. 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48741
  10. 14/08/10 15:09:57 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
  11. 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] OPEN
  12. 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555
  13. 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38166
  14. 14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }
  15. 14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }

复制代码

    11)案例11:Load balancing Sink Processor
    load balance type和failover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。

      a)在m1创建Load_balancing_Sink_Processors配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf
  2. a1.sources = r1
  3. a1.sinks = k1 k2
  4. a1.channels = c1
  5. #这个是配置Load balancing的关键,需要有一个sink group
  6. a1.sinkgroups = g1
  7. a1.sinkgroups.g1.sinks = k1 k2
  8. a1.sinkgroups.g1.processor.type = load_balance
  9. a1.sinkgroups.g1.processor.backoff = true
  10. a1.sinkgroups.g1.processor.selector = round_robin
  11. # Describe/configure the source
  12. a1.sources.r1.type = syslogtcp
  13. a1.sources.r1.port = 5140
  14. a1.sources.r1.channels = c1
  15. # Describe the sink
  16. a1.sinks.k1.type = avro
  17. a1.sinks.k1.channel = c1
  18. a1.sinks.k1.hostname = m1
  19. a1.sinks.k1.port = 5555
  20. a1.sinks.k2.type = avro
  21. a1.sinks.k2.channel = c1
  22. a1.sinks.k2.hostname = m2
  23. a1.sinks.k2.port = 5555
  24. # Use a channel which buffers events in memory
  25. a1.channels.c1.type = memory
  26. a1.channels.c1.capacity = 1000
  27. a1.channels.c1.transactionCapacity = 100

复制代码

      b)在m1创建Load_balancing_Sink_Processors_avro配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = avro
  7. a1.sources.r1.channels = c1
  8. a1.sources.r1.bind = 0.0.0.0
  9. a1.sources.r1.port = 5555
  10. # Describe the sink
  11. a1.sinks.k1.type = logger
  12. # Use a channel which buffers events in memory
  13. a1.channels.c1.type = memory
  14. a1.channels.c1.capacity = 1000
  15. a1.channels.c1.transactionCapacity = 100
  16. # Bind the source and sink to the channel
  17. a1.sources.r1.channels = c1
  18. a1.sinks.k1.channel = c1

复制代码

      c)将2个配置文件复制到m2上一份

  1. root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf  root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf
  2. root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf

复制代码

      d)打开4个窗口,在m1和m2上同时启动两个flume agent

  1. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
  2. root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      e)然后在m1或m2的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上

  1. root@m1:/home/hadoop# echo "idoall.org test1" | nc localhost 5140
  2. root@m1:/home/hadoop# echo "idoall.org test2" | nc localhost 5140
  3. root@m1:/home/hadoop# echo "idoall.org test3" | nc localhost 5140
  4. root@m1:/home/hadoop# echo "idoall.org test4" | nc localhost 5140

复制代码

      f)在m1的sink窗口,可以看到以下信息:

  1. 14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
  2. 14/08/10 15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }

复制代码

      g)在m2的sink窗口,可以看到以下信息:

  1. 14/08/10 15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
  2. 14/08/10 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }

复制代码

    说明轮询模式起到了作用。

    12)案例12:Hbase sink

      a)在测试之前,请先参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》将hbase启动

      b)然后将以下文件复制到flume中:

  1. cp /home/hadoop/hbase-0.96.2-hadoop2/lib/protobuf-java-2.5.0.jar /home/hadoop/flume-1.5.0-bin/lib
  2. cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-client-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib
  3. cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-common-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib
  4. cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-protocol-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib
  5. cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-server-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib
  6. cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-hadoop2-compat-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib
  7. cp /home/hadoop/hbase-0.96.2-hadoop2/lib/hbase-hadoop-compat-0.96.2-hadoop2.jar /home/hadoop/flume-1.5.0-bin/lib@@@
  8. cp /home/hadoop/hbase-0.96.2-hadoop2/lib/htrace-core-2.04.jar /home/hadoop/flume-1.5.0-bin/lib

复制代码

      c)确保test_idoall_org表在hbase中已经存在

      d)在m1创建hbase_simple配置文件

  1. root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf
  2. a1.sources = r1
  3. a1.sinks = k1
  4. a1.channels = c1
  5. # Describe/configure the source
  6. a1.sources.r1.type = syslogtcp
  7. a1.sources.r1.port = 5140
  8. a1.sources.r1.host = localhost
  9. a1.sources.r1.channels = c1
  10. # Describe the sink
  11. a1.sinks.k1.type = logger
  12. a1.sinks.k1.type = hbase
  13. a1.sinks.k1.table = test_idoall_org
  14. a1.sinks.k1.columnFamily = name
  15. a1.sinks.k1.column = idoall
  16. a1.sinks.k1.serializer =  org.apache.flume.sink.hbase.RegexHbaseEventSerializer
  17. a1.sinks.k1.channel = memoryChannel
  18. # Use a channel which buffers events in memory
  19. a1.channels.c1.type = memory
  20. a1.channels.c1.capacity = 1000
  21. a1.channels.c1.transactionCapacity = 100
  22. # Bind the source and sink to the channel
  23. a1.sources.r1.channels = c1
  24. a1.sinks.k1.channel = c1

复制代码

      e)启动flume agent

  1. /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/hbase_simple.conf -n a1 -Dflume.root.logger=INFO,console

复制代码

      f)测试产生syslog

  1. root@m1:/home/hadoop# echo "hello idoall.org from flume" | nc localhost 5140

复制代码

      g)这时登录到hbase中,可以发现新数据已经插入

  1. root@m1:/home/hadoop# /home/hadoop/hbase-0.96.2-hadoop2/bin/hbase shell
  2. 2014-08-10 16:09:48,984 INFO  [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available
  3. HBase Shell; enter 'help<RETURN>' for list of supported commands.
  4. Type "exit<RETURN>" to leave the HBase Shell
  5. Version 0.96.2-hadoop2, r1581096, Mon Mar 24 16:03:18 PDT 2014
  6. hbase(main):001:0> list
  7. TABLE
  8. SLF4J: Class path contains multiple SLF4J bindings.
  9. SLF4J: Found binding in [jar:file:/home/hadoop/hbase-0.96.2-hadoop2/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
  10. SLF4J: Found binding in [jar:file:/home/hadoop/hadoop-2.2.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
  11. SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
  12. hbase2hive_idoall
  13. hive2hbase_idoall
  14. test_idoall_org
  15. 3 row(s) in 2.6880 seconds
  16. => ["hbase2hive_idoall", "hive2hbase_idoall", "test_idoall_org"]
  17. hbase(main):002:0> scan "test_idoall_org"
  18. ROW                                                    COLUMN+CELL
  19. 10086                                                 column=name:idoall, timestamp=1406424831473, value=idoallvalue
  20. 1 row(s) in 0.0550 seconds
  21. hbase(main):003:0> scan "test_idoall_org"
  22. ROW                                                    COLUMN+CELL
  23. 10086                                                 column=name:idoall, timestamp=1406424831473, value=idoallvalue
  24. 1407658495588-XbQCOZrKK8-0                            column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume
  25. 2 row(s) in 0.0200 seconds
  26. hbase(main):004:0> quit

复制代码

经过这么多flume的例子测试,如果你全部做完后,会发现flume的功能真的很强大,可以进行各种搭配来完成你想要的工作,俗话说师傅领进门,修行在个人,如何能够结合你的产品业务,将flume更好的应用起来,快去动手实践吧。

迦壹
http://idoall.org/home.php?mod=s ... ;do=blog&id=550

Flume1.5.0入门:安装、部署、及flume的案例的更多相关文章

  1. Flume1.9.0的安装、部署、简单应用(含分布式、与Hadoop3.1.2、Hbase1.4.9的案例)

    目录 目录 前言 什么是Flume? Flume的特点 Flume的可靠性 Flume的可恢复性 Flume的一些核心概念 Flume的官方网站在哪里? Flume在哪里下载以及如何安装? 设置环境变 ...

  2. Storm-0.9.0.1安装部署 指导

    可以带着下面问题来阅读本文章: 1.Storm只支持什么传输 2.通过什么配置,可以更改Zookeeper默认端口 3.Storm UI必须和Storm Nimbus部署在同一台机器上,UI无法正常工 ...

  3. kafka_2.11-2.0.0_安装部署

    参考博文:kafka 配置文件参数详解 参考博文:Kafka[第一篇]Kafka集群搭建 参考博文:如何为Kafka集群选择合适的Partitions数量 参考博文:Kafka Server.prop ...

  4. 大数据篇:DolphinScheduler-1.2.0.release安装部署

    大数据篇:DolphinScheduler-1.2.0.release安装部署 1 配置jdk #查看命令 rpm -qa | grep java #删除命令 rpm -e --nodeps xxx ...

  5. 2、Flume1.7.0入门:安装、部署、及flume的案例

    一.什么是Flume? flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用. flume的特点: flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的 ...

  6. Flume1.5.0的安装、部署、简单应用(含伪分布式、与hadoop2.2.0、hbase0.96的案例)

    目录: 一.什么是Flume? 1)flume的特点 2)flume的可靠性 3)flume的可恢复性 4)flume 的 一些核心概念 二.flume的官方网站在哪里? 三.在哪里下载? 四.如何安 ...

  7. flume-1.6.0单节点部署

    这个不多说,直接上干货,部署很简单! 步骤一:flume的下载 当然,这里也可以使用wget命令在线下载,很简单,不多说. 步骤二:flume的上传 [hadoop@djt002 flume]$ ls ...

  8. WIN中SharePoint Server 2010 入门安装部署详解

    目前流行的原始安装文件基本都是这样的:Windows Server 2008 R2+SQL Server 2008R2+SharePoint Server 2010     这个初始环境原本也无可厚非 ...

  9. [DPI][suricata] suricata-4.0.3 安装部署

    suricata 很值得借鉴.但是首先还是要安装使用,作为第一步的熟悉. 安装文档:https://redmine.openinfosecfoundation.org/projects/suricat ...

随机推荐

  1. ant-jmeter批量脚本

    <?xml version="1.0"?> <project name="autotest" default="all" ...

  2. Android广播BroadcastReceiver

    Android 系统里定义了各种各样的广播,如电池的使用状态,电话的接收和短信的接收,开机启动都会产生一个广播.当然用户也可以自定义自己的广播. 既然说到广播,那么必定有一个广播发送者,以及广播接收器 ...

  3. Linux内核(4) - 内核学习的心理问题

    对于学习来说,无论是在学校的课堂学习,还是这里说的内核学习,效果好或者坏,最主要取决于两个方面——方法论和心理.注意,我无视了智商的差异,这玩意儿玄之又玄,岔开了说,属于迷信的范畴. 前面又是Kern ...

  4. Linux时间子系统(十二) periodic tick

    一.tick device概念介绍 1.数据结构 在内核中,使用struct tick_device来抽象系统中的tick设备,如下: struct tick_device {     struct ...

  5. 分享Memcached shell启动停止脚本

    注意:要使用这个shell,必须先成功建立memcache环境 1>建立memcached文件和权限 [root@luozhonghua ~]# touch /etc/init.d/memcac ...

  6. appserv - 最简单的绑定路径

    补充:此方法比较low. 推荐伪静态:http://www.cnblogs.com/CyLee/p/5544119.html 找到路径C:\AppServ\Apache24\conf\httpd.co ...

  7. asp.net2.0导出pdf文件完美解决方案【转载】

    asp.net2.0导出pdf文件完美解决方案 作者:清清月儿 PDF简介:PDF(Portable Document Format)文件格式是Adobe公司开发的电子文件格式.这种文件格式与操作系统 ...

  8. mysql-5.7 密码过期详解

    一.起源: 今天一上班就听到说error-log里记录了大量的 ERROR 1820 (HY000): You must reset your password using ALTER USER st ...

  9. 客户端负载均衡:Ribbon

    Ribbon是一个客户端的负载均衡器,可以提供很多HTTP和TCP的控制行为.Feign已经使用了Ribbon,所以如果你使用了@FeignClient,Riboon也同样被应用了. Ribbon核心 ...

  10. HTML解析HtmlAgility学习

    HtmlAgility是一个开源的Html解析库,据说是C#版的JQuery,功能非常强大. 该篇学习它的解析功能,还可以模拟用户请求,创建html,设置代理等等,暂先不研究. ----------- ...