Scaring the Birds

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1257    Accepted Submission(s): 420

Problem Description
It’s harvest season now! 

Farmer John plants a lot of corn. There are many birds living around his corn field. These birds keep stealing his corn all the time. John can't stand with that any more. He decides to put some scarecrows in the field to drive the birds away. 

John's field can be considered as an N×N grid which has N×N intersections. John plants his corn on every intersection at first. But as time goes by, some corn were destroyed by rats or birds so some vacant intersections were left. Now John wants to put scarecrows on those vacant intersections and he can put at most one scarecrow on one intersection. Because of the landform and the different height of corn, every vacant intersections has a scaring range R meaning that if John put a scarecrow on it, the scarecrow can only scare the birds inside the range of manhattan distance R from the intersection.

The figure above shows a 7×7 field. Assuming that the scaring range of vacant intersection (4,2) is 2, then the corn on the marked intersections can be protected by a scarecrow put on intersection (4,2). 

Now John wants to figure out at least how many scarecrows he must buy to protect all his corn.

 
Input
There are several test cases. 

For each test case: 

The first line is an integer N ( 2 <= N <= 50 ) meaning that John's field is an N×N grid. 

The second line is an integer K ( 0<= K <= 10) meaning that there are K vacant intersections on which John can put a scarecrow.

The third line describes the position of K vacant intersections, in the format of r
1,c
1,r
2,c
2 …. r
K,c
k . (r
i,c
i) is the position of the i-th intersection and 1 <= r
1,c
1,r
2,c
2…. r
K,c
k <= N. 

The forth line gives the scaring range of all vacant intersections, in the format of R
1,R
2…R
K and 0 <= R
1,R
2…R
K <= 2 × N. 

The input ends with N = 0.
 
Output
For each test case, print the minimum number of scarecrows farmer John must buy in a line. If John has no way to protect all the corn, print -1 instead.
 
Sample Input
4
2
2 2 3 3
1 3
4
2
2 2 3 3
1 4
0
 
Sample Output
-1
1
 
Source
 


题目大意:给你一张地图,然后有n个地点是空的用来放稻草人,其它的都是田地,每个稻草人位置有自己的横纵坐标以及可以保护田地的"半径"fabs(x-a)+fabs(y-b)<=r。问你找最少的稻草人使得所有田地被保护。



  解题思路:根据这个题目,以后可以把一个集合的所有子集全部摸出来了。开始想用DFS写,后来觉得求最小的,应该用BFS,最后思路全乱了,还是回到最初的枚举所有的状态数目。由于状态数目是1<<p,即为2^p,然后把0~1<<p转化为p位二进制存储,刚好唯一,就是题目中的VIS数组。

  题目地址:Scaring the Birds

AC代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
using namespace std;
int n,p,res; //p指的是有多少个空地可以放稻草人
int visi[55][55];
int vis[12]; //点访问的情况
int num; //记录用了多少点
struct mq
{
int x;
int y;
int r;
};
mq node[12]; void init()
{
memset(visi,0,sizeof(visi));
memset(vis,0,sizeof(vis));
for(int i=0;i<p;i++)
visi[node[i].x][node[i].y]=1;
} void fun()
{
int j,k,ra,rb,ca,cb;
num=0;
for(int i=0;i<p;i++)
{
if(vis[i])
{
num++;
ra=node[i].x-node[i].r;
rb=node[i].x+node[i].r;
ca=node[i].y-node[i].r;
cb=node[i].y+node[i].r;
if(ra<1) ra=1;
if(rb>n) rb=n;
if(ca<1) ca=1;
if(cb>n) cb=n;
for(j=ra;j<=rb;j++)
for(k=ca;k<=cb;k++)
if(abs(j-node[i].x)+abs(k-node[i].y)<=node[i].r) //范围之类
visi[j][k]=1;
}
}
} int over() //是否全部覆盖
{
int i,j;
for(i=1; i<=n; i++)
{
for(j=1; j<=n; j++)
if(!visi[i][j])
{
return 0;
}
}
return 1;
} void solve()
{
int i,j;
res=100;
for(i=0;i<(1<<p);i++) //枚举所有的状态
{
init();
int tmp=i;
for(j=0;j<p;j++)
{
vis[j]=tmp&1; //刚好二进制是这样存储,唯一! 所有枚举子集
tmp>>=1;
//cout<<vis[j]<<" ";
}
//cout<<endl;
fun();
if(over()) //可以覆盖了
res=min(res,num);
}
}
int main()
{
int i;
while(scanf("%d",&n)&&n)
{
scanf("%d",&p);
for(i=0; i<p; i++)
scanf("%d%d",&node[i].x,&node[i].y);
for(i=0; i<p; i++)
scanf("%d",&node[i].r);
init();
if(over()) //说明不需要稻草人。。。
{
puts("0");
continue;
}
solve();
if(res==100) puts("-1"); //说明覆盖不了
else printf("%d\n",res);
}
return 0;
} //31MS


HDU 4462Scaring the Birds(枚举所有状态)的更多相关文章

  1. hdu 4057 AC自己主动机+状态压缩dp

    http://acm.hdu.edu.cn/showproblem.php?pid=4057 Problem Description Dr. X is a biologist, who likes r ...

  2. HDU 6607 Time To Get Up(状态压缩+枚举)

    题目网址: http://acm.hdu.edu.cn/showproblem.php?pid=6077 思路: 先预处理一下,将每个数字块的“X”看作1,“.”看作0,进行状态压缩转换成二进制数,用 ...

  3. HDU 1074 Doing Homework (dp+状态压缩)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:学生要完成各科作业, 给出各科老师给出交作业的期限和学生完成该科所需时间, 如果逾期一 ...

  4. Effective Objective-C 2.0 — 第五条用枚举表示状态、选项、状态码 (未看完)

    枚举是一种常量命名方式.某个对象所经历的各种状态就可以定义为一个简单的枚举集.(enumeration set) 编译器会为枚举分配一个独有的编号,从0开始,每个枚举递增1.实现枚举所用的数据类型取决 ...

  5. hdu 5067 Harry And Dig Machine (状态压缩dp)

    题目链接 bc上的一道题,刚开始想用这个方法做的,因为刚刚做了一个类似的题,但是想到这只是bc的第二题, 以为用bfs水一下就过去了,结果MLE了,因为bfs的队列里的状态太多了,耗内存太厉害. 题意 ...

  6. HDU 5778 abs (枚举)

    abs 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5778 Description Given a number x, ask positive ...

  7. BZOJ1688|二进制枚举子集| 状态压缩DP

    Disease Manangement 疾病管理 Description Alas! A set of D (1 <= D <= 15) diseases (numbered 1..D) ...

  8. HDU 5724 Chess(SG函数+状态压缩)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=5724 题意: 现在有一个n*20的棋盘,上面有一些棋子,双方每次可以选择一个棋子把它移动到其右边第一 ...

  9. HDU 4739 Zhuge Liang's Mines (状态压缩+背包DP)

    题意 给定平面直角坐标系内的N(N <= 20)个点,每四个点构成一个正方形可以消去,问最多可以消去几个点. 思路 比赛的时候暴力dfs+O(n^4)枚举写过了--无意间看到有题解用状压DP(这 ...

随机推荐

  1. 【C#】List列表的深复制,引用类型深复制

    需求:深复制该列表. Student实体类: public class Student { public string Name { get; set; } public int Age { get; ...

  2. 【WPF】XAML引入资源和在C#代码中动态添加样式

    转载自: http://blog.csdn.net/honantic/article/details/48781543 XAML引入资源参考这里: http://blog.csdn.net/qq_18 ...

  3. 在CMD下启动vmware、Xshell连接虚拟机以及控制Chrome浏览器自动执行js登录校园网

    标题有点长,主要是写个bat出来玩玩, (1)不用每次都手动关闭mysql服务(我不想把它设为手动启动,有强迫症) (2)然后希望每次vmware能自动连上虚拟机 (3)以及每次Xshell都能自动启 ...

  4. Kettle安装与配置

    设置好了之后可以测试下 后来百度发现是缺少mysql的JDBC连接驱动 kettle在初次配置的时候容易出这个问题,这个是由于java程序在连接mysql数据库的时候缺少驱动 我的kettle版本是4 ...

  5. div 背景自适应

    .bg { background: url(images/title_bg.jpg); filter: "progid:DXImageTransform.Microsoft.AlphaIma ...

  6. DevExpress gridcontrol学习知识点

    .//允许自动合并单元格gv1.OptionsView.AllowCellMerge = true; 设置某列不合并 选中该列,在OptionsColumns-->AllowMerge中设置为f ...

  7. Struts2之Domain Model(域模型)。

    使用原因 为了避免在action中有太多的类,而需要写大量的get().set(). 故在Struts2 使用 了 domain model. Action: private User user; p ...

  8. Spring 4 官方文档学习(九)数据访问之事务管理

    说明:未整理版,未完待续,请绕行 本部分的重点是数据访问以及数据访问层与业务层之间的交互. 1.Spring框架的事务管理 介绍 http://docs.spring.io/spring/docs/c ...

  9. win7语音识别开发(sapi)

    参考:http://msdn.microsoft.com/en-us/library/ee125663(v=vs.85).aspx    (sapi5.4 reference) http://msdn ...

  10. javascript中call、apply、argument、callee、caller

    1.Call方法 调用一个对象的一个方法,以另一个对象替换当前对象. call([thisObj[,arg1[, arg2[, [,.argN]]]]]) thisObj 可选项.将被用作当前对象的对 ...