0-前言

笔者本来周末约好朋友出去骑行,不料天公不作美!哎,闲来无事来到了实验室,本来打算看看《天天向上》,而这一期又实在不好看(偶像剧)。只好来做做一些小实验,脑海里突然想到“正态分布“。于是乎我就开始琢磨用中心极限定理去简单验证一下”正态分布“。

1-工具

工具:当然是用的Python啦,嘿嘿。功能强大~

2-前期储备知识

1) 切尔雪夫不等式,

设随机变量X具有数学期望,方差则对任意正数ε,

不等式成立。

意义: 切尔雪夫不等式说明,X的方差越小,事件发生的概率越大。即:X取的值基本上集中在期望附近。

2) 大数定理

设  ,....是一列相互独立的随机变量(或者两两不相关),他们分别存在期望 和方差。若存在常数C使得:

意义: 当n很大时,随机变量的平均值Yn在概率意义下无限接近期望。注意:出现偏离是可能的,但这种可能性很小,当n无限大时,这种可能性的概率为0.其中这里有一个误区就是: “概论为0就不发生”,事实上这时错误的。详情还请读者自行查阅。

3) 如何证明大数定理呢?

笔者也是自己证明啦,考虑到要花很长时间才能写出来,就不赘述啦,读者可自行查阅相关资料。在这里我只给出提示:根据Y的定义,求出它的期望和方差,代入切尔雪夫不等式即可!

4) 中心极限定理

当然这里只介绍“独立同分布”的中心极限定理啦,因为我要验证“正态分布”嘛~

设随机变量X1,X2,......Xn,......独立同分布,并且具有有限的数学期望和方差:E(Xi)=μ,D(Xi)=σ20(k=1,2....),则对任意x,分布函数

注意:该定理说明,当n很大时,随机变量近似地服从标准正态分布N(0,1)。因此,当n很大时,  近似地服从正态分布N(nμ,nσ2)

中心极限定理的意义: 实际问题中,很多随机现象可以看做许多因素的独立影响的综合反应,往往近似服从正态分布。

例如: 1.城市的耗电量呀 :大量用户的耗电量的总和

2.测量误差呀 : 许多观察不到的,微小误差的总和

注意:是多个随机变量的和才可以,有些问题是乘性误差,则需要鉴别或者取对数后使用,

3.线性回归中,将使用该定理论证最小二乘法的合理性!

3-Python 验证:

import numpy
import matplotlib.pyplot as plt
u = numpy.random.uniform(0.0,1.0,10000)
plt.hist(u,80,color='g',alpha = 0.75)
plt.grid(True)
plt.show()

times = 10000
for time in range(times):
    u += numpy.random.uniform(0.0,1.0,10000)
print(len(u))
u/=times
print(len(u))
plt.hist(u,80,color='g',alpha = 0.75)
plt.grid(True)
plt.show()

中心极限定理&&正态分布 随想的更多相关文章

  1. BZOJ.4909.[SDOI2017]龙与地下城(正态分布 中心极限定理 FFT Simpson积分)

    BZOJ 洛谷 https://www.luogu.org/blog/ShadowassIIXVIIIIV/solution-p3779# 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它 ...

  2. 中心极限定理(Central Limit Theorem)

    中心极限定理:每次从总体中抽取容量为n的简单随机样本,这样抽取很多次后,如果样本容量很大,样本均值的抽样分布近似服从正态分布(期望为  ,标准差为 ). (注:总体数据需独立同分布) 那么样本容量n应 ...

  3. 抽样分布|t分布|中心极限定理|点估计|矩估计|最大似然法|

    生物统计与实验设计-统计学基础-2&区间估计-1 正态分布参数:均值和方差 其中,选择1d是因为好算:通常,95%区分大概率事件和小概率事件, 当总体是正态分布时,可以利用常用抽样分布估计出样 ...

  4. 中心极限定理|z分布|t分布|卡方分布

    生物统计学 抽样分布:n个样本会得到n个统计量,将这n个统计量作为总体,该总体的分布即是抽样分布 根据辛钦大数定律,从一个非正态分布的总体中抽取的含量主n的样本,当n充分大时,样本平均数渐近服从正态分 ...

  5. 中心极限定理(为什么y服从高斯分布)

    因为每一条数据都服从IID原则: 根据中心极限定理,当数据增加的时候,样本均值的分布慢慢变成正态分布 不管分布式什么分布,累加起来都是高斯分布 As sum increases, sum of non ...

  6. 中心极限定理 | central limit theorem | 大数定律 | law of large numbers

    每个大学教材上都会提到这个定理,枯燥地给出了定义和公式,并没有解释来龙去脉,导致大多数人望而生畏,并没有理解它的美. <女士品茶>有感 待续~ 参考:怎样理解和区分中心极限定理与大数定律?

  7. 【概率论】6-3:中心极限定理(The Central Limit Theorem)

    title: [概率论]6-3:中心极限定理(The Central Limit Theorem) categories: - Mathematic - Probability keywords: - ...

  8. 正态分布(Normal distribution)又名高斯分布(Gaussian distribution)

    正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及project等领域都很重要的概率分布,在统计学的很多方面有着重大的影 ...

  9. 最大似然估计、n阶矩、协方差(矩阵)、(多元)高斯分布 学习摘要

    最大似然估计 似然与概率 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)和概率(Probability)是两个不同的概念.概率是在特定环境下某件事 ...

随机推荐

  1. 收藏的一些github开源项目,在这里记录一下

    1.在windows系统上在命令行中执行rm -fr */*.file 会报错, rimraf这个项目提供了跨平台支持rm命令,github地址: https://github.com/isaacs/ ...

  2. 【ZZ】MySQL 索引优化全攻略 | 菜鸟教程

    MySQL 索引优化全攻略 http://www.runoob.com/w3cnote/mysql-index.html

  3. [转]Web 调试工具之 Advanced REST client

    原文:http://bbs.itcast.cn/forum.php?mod=viewthread&tid=85654 安装方式: 3.1. 如果你能FQ访问谷歌商店,那么就简单了 在这里直接安 ...

  4. display:table; 也可以实现 div 始终和内包的图片大小相同

    display:table; 也可以实现 div 始终和内包的图片大小相同

  5. 关于sqoop --split-by 及 -m的理解

    场景: sqoop import --connect jdbc:postgresql://...../..... --username ....  --query "select * fro ...

  6. controller 允许跨域访问

    1.在controller 上加上 @CrossOrigin(origins = {"http://localhost:7777", "http://someserver ...

  7. JPA with Hibernate implementation

    https://code.google.com/p/jpa-basics-tutorial/source/checkout http://alextretyakov.blogspot.com/2013 ...

  8. HDFS NameNode HA 部署文档

    简介: HDFS High Availability Using the Quorum Journal Manager Hadoop 2.x 中,HDFS 组件有三个角色:NameNode.DataN ...

  9. 记一次结巴分词.net core 2.0版 nuget发布过程

    最近用到分词考虑很久,选用了结巴分词,原因见博客Lucene.net(4.8.0) 学习问题记录五: JIEba分词和Lucene的结合,以及对分词器的思考 既然选好了,难就开始行动吧 . 查了.ne ...

  10. 取出资源文件中的bitmap,并将其保存到TMemoryStream中,从资源里载入图象而不丢失调色板

    从资源里载入图象而不丢失调色板 procedure loadgraphic(naam:string);var  { I've moved these in here, so they exist on ...