题目传送门

题意:给出n个活动,m个人,请人需要花费$a[i]$的钱,举办一次活动可以赚$b[i]$的钱,但是需要固定的几个人在场,一个人只需要请一次后就必定在场,问最大收益。

思路:

  下列结论来自hihocoder的例题

  下面不加证明的给出几个概念和结论。

  1)闭合子图:给定一个有向图,从中选择一些点组成一个点集V。对于V中任意一个点,其后续节点都仍然在V中。比如:

  

在这个图中有8个闭合子图:∅,{3},{4},{2,4},{3,4},{1,3,4},{2,3,4},{1,2,3,4}

  2) 最大权闭合子图:如上图的二分图,A部权值为正,B部权值为负,要求闭合子图权值最大,即为最大权闭合子图。

  3)最大权闭合子图求法:首先建立源点s和汇点t,将源点s与所有权值为正的点相连,容量为权值;将所有权值为负的点与汇点t相连,容量为权值的绝对值;权值为0的点不做处理;同时将原来的边容量设置为无穷大。$ans=权值为正的点的和-最小割$

此题显然就是求一个最大权闭合子图。

#include<bits/stdc++.h>
#define clr(a,b) memset(a,b,sizeof(a))
using namespace std; typedef long long ll; const ll INFLL = 0x3f3f3f3f3f3f3f3f;
const int INF = 0x3f3f3f3f;
const int maxn = ; struct Edge {
int to, flow, nxt;
Edge(){}
Edge(int to, int nxt, int flow):to(to),nxt(nxt), flow(flow){}
}edge[maxn * maxn * ]; int head[maxn*], dep[maxn*];
int S, T;
int N, n, m, tot;
void init(int n)
{
N=n;
for (int i = ; i <= N; ++i) head[i] = -;
tot = ;
} void addv(int u, int v, int w, int rw = )
{
edge[tot] = Edge(v, head[u], w); head[u] = tot++;
edge[tot] = Edge(u, head[v], rw); head[v] = tot++;
} bool BFS()
{
for (int i = ; i <= N; ++i) dep[i] = -;
queue<int>q;
q.push(S);
dep[S] = ;
while (!q.empty())
{
int u = q.front();
q.pop();
for (int i = head[u]; ~i; i = edge[i].nxt)
{ if (edge[i].flow && dep[edge[i].to] == -)
{
dep[edge[i].to] = dep[u] + ;
q.push(edge[i].to);
}
}
}
return dep[T] < ? : ;
} int DFS(int u, int f)
{
if (u == T || f == ) return f;
int w, used = ;
for (int i = head[u]; ~i; i = edge[i].nxt)
{
if (edge[i].flow && dep[edge[i].to] == dep[u] + )
{
w = DFS(edge[i].to, min(f - used, edge[i].flow));
edge[i].flow -= w;
edge[i ^ ].flow += w;
used += w;
if (used == f) return f;
}
}
if (!used) dep[u] = -;
return used;
} int Dicnic()
{
int ans = ;
while (BFS())
{
ans += DFS(S, INF);
}
return ans;
} int main(){
cin>>n>>m;
T=n+m+;
init(T);
S=;
for(int i=;i<=m;i++){
int w;
scanf("%d",&w);
addv(i+n,T,w);
}
int res=;
for(int i=;i<=n;i++){
int w,k;
scanf("%d%d",&w,&k);
addv(S,i,w);
res+=w;
while(k--){
scanf("%d",&w);
addv(i,n+w,INF);
}
}
int ans=res-Dicnic();
printf("%d\n",ans);
}

hiho# 1398 最大权闭合子图 网络流的更多相关文章

  1. codeforces 1082G - Petya and Graph 最大权闭合子图 网络流

    题意: 让你选一些边,选边的前提是端点都被选了,求所有的边集中,边权和-点权和最大的一个. 题解: 对于每个边建一个点,然后就是裸的最大权闭合子图, 结果比赛的时候我的板子太丑,一直T,(不会当前弧优 ...

  2. BZOJ 1565 植物大战僵尸 最大权闭合子图+网络流

    题意: 植物大战僵尸,一个n*m的格子,每 个格子里有一个植物,每个植物有两个属性: (1)价值: (2)保护集合,也就是这个植物可以保护矩阵中的某些格子. 现在你是僵尸,你每次只能从(i,m) 格子 ...

  3. HihoCoder 1398 网络流 - 最大权闭合子图

    周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编号1. ...

  4. hiho 第119周 最大权闭合子图

    描述 周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编 ...

  5. BZOJ 4873 [Shoi2017]寿司餐厅 | 网络流 最大权闭合子图

    链接 BZOJ 4873 题解 当年的省选题--还记得蒟蒻的我Day1 20分滚粗-- 这道题是个最大权闭合子图的套路题.严重怀疑出题人就是先画好了图然后照着图编了个3000字的题面.和我喜欢的妹子当 ...

  6. hihocoder1398 网络流五之最大权闭合子图

    最大权闭合子图 虽然我自己现在总结不好最大权闭合子图.但也算稍稍理解辣. 网络流起步ing~~~(- ̄▽ ̄)- #include<iostream> #include<cstdio& ...

  7. Cogs 727. [网络流24题] 太空飞行计划(最大权闭合子图)

    [网络流24题] 太空飞行计划 ★★☆ 输入文件:shuttle.in 输出文件:shuttle.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] W 教授正在为国家航天中心计 ...

  8. [HIHO119]网络流五·最大权闭合子图(最大流)

    题目链接:http://hihocoder.com/contest/hiho119/problem/1 题意:中文题意. 由于1≤N≤200,1≤M≤200.最极端情况就是中间所有边都是满的,一共有N ...

  9. bzoj1391 最大权闭合子图(also最小割、网络流)

    一道裸的最小割的题,写一下只是练练手. 表示被卡M,RE不开心.一道裸题至于吗? 再次复习一下最大权闭合子图: 1.每一个点若为正权,与源点连一条容量为绝对值权值的边.否则连向汇点一条容量为绝对值权值 ...

随机推荐

  1. centos7安装kubernetes 1.1

    原文地址:http://foxhound.blog.51cto.com/1167932/1717105 前提:centos7 已经update yum update -y 一.创建yum源 maste ...

  2. swift - tableView数据向上收缩动画

    // //  TTTableViewController.swift //  tableVIewAnimation // //  Created by su on 15/12/11. //  Copy ...

  3. JAVA反射机制o

    Reflection是Java 程序开发语言的特征之一,它允许运行中的 Java 程序对自身进行检查,或者说"自审",并能直接操作程序的内部属性.例如,使用它能获得 Java 类中 ...

  4. Bootstrap导航栏

    导航栏: <div id="menu-nav" class="navbar navbar-default navbar-inverse navbar-fixed-t ...

  5. Some_tools

    Why and what There are lots of nice or great tools on the internet, sometimes I will just forget a p ...

  6. 洛谷P3224 [HNOI2012]永无乡(线段树合并+并查集)

    题目描述 永无乡包含 nnn 座岛,编号从 111 到 nnn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nnn 座岛排名,名次用 111 到 nnn 来表示.某些岛之间由巨大的桥连接, ...

  7. Mac提示App已损坏 你应该将它移到废纸篓的解决方案

    现象 "Elmedia Player.app"已损坏,打不开. 您应该将它移到废纸篓. 原因 很多朋友们在安装软件时Mac OS系统出现提示"XXXApp 已损坏&quo ...

  8. 我的Jquery参考词典

    由于工作主要用到Asp.net Mvc+Jquery,最近也看了一些Jquery的书籍,在此总结以备回顾. 已读书籍:<Jquery In Action> 主要讲了些Jquery语法以及A ...

  9. Javascript设计模式理论与实战:适配器模式

    有的时候在开发过程中,我们会发现,客户端需要的接口和提供的接口发生不兼容的问题.由于特殊的原因我们无法修改客户端接口.在这种情况下,我们需要适配现有接口和不兼容的类,这就要提到适配器模式.通过适配器, ...

  10. XEvent--基础

    --SQL Server 扩展事件具有高度可伸缩且高度可配置的体系结构,--使用户能够按需收集解决性能问题或确定性能问题所需的信息.--1. 性能损耗小--2. 可配置性高--3. 可捕获底层事件 - ...