题意:给n个字符串(3<=n<=1000),当字符串str[i]的尾字符与str[j]的首字符一样时,可用dot连接。判断用所有字符串一次且仅一次,连接成一串。若可以,输出答案的最小字典序(dot是最小字典序的,比‘a'小)。

显然就是以26个字母为结点,n个字符串为边,求解有向图的欧拉通路。

不过这里要注意,26个字母不一定都用上。

先判断有向图的欧拉通路的条件是否成立:

1.有一个结点入度等于出度+1且有一个结点出度等于入度+1且其他结点入度等于出度。(或所有结点入度等于出度)

2.有向图的基图连通。(把有向边改成无向边后,图连通)

感觉中间那段while(top)可以当做模板来用了,具体机理这里不详细说了,看着想一想还是能理解的。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <set>
#include <queue>
#include <map>
#include <stack>
using namespace std; #define MP make_pair
#define ll long long
#define inf 0x3f3f3f3f int in[30],out[30];
struct Edge{
int v,nxt;
bool vis;
}e[1010];
int head[30],esz;
void addedge(int u,int v){
e[esz].v=v,e[esz].nxt=head[u];
e[esz].vis=false;
head[u]=esz++;
}
int fa[30];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
bool jud(){
for(int i=0;i<26;++i) fa[i]=i;
int st;
for(int u=0;u<26;++u){
for(int j=head[u];j!=-1;j=e[j].nxt){
int v = e[j].v;
st = fa[find(u)] = find(v);
}
}
for(int i=0;i<26;++i){
if(out[i]+in[i] && find(i)!=find(st)) return false;
}
return true;
}
int main(){
int t,n;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
string s[1010];
for(int i=0;i<n;++i){
char tmp[22];
scanf("%s",tmp);
s[i] = tmp;
}
sort(s,s+n);
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
queue<string>val[30][30];
esz=0; memset(head,-1,sizeof(head));
for(int i=n-1;i>=0;--i){
int u = s[i][0]-'a', v = s[i][s[i].size()-1]-'a';
out[u]++; in[v]++;
addedge(u,v);
}
for(int i=0;i<n;++i){
int u = s[i][0]-'a', v = s[i][s[i].size()-1]-'a';
val[u][v].push(s[i]);
}
int j1=-1,j2=-1,j3=1;
for(int i=0;i<26;++i){
if(in[i]==out[i]) continue;
if(out[i]==in[i]+1){
if(j1==-1) j1=i;
else j3=0;
continue;
}
if(in[i]==out[i]+1){
if(j2==-1) j2=i;
else j3=0;
continue;
}
j3=0;
}
if((j1^j2)<0) j3=0;
if(j3==0 || jud()==false){
puts("***");
continue;
}
if(j1==-1){
for(int i=0;i<26;++i){
if(out[i]){
j1=i;
break;
}
}
}
stack<int>st;
vector<int>ans;
st.push(j1);
while(!st.empty()){
int u = st.top(); st.pop();
bool f = false;
for(int i=head[u];i!=-1;i=e[i].nxt){
int v = e[i].v;
if(e[i].vis) continue;
e[i].vis = true;
st.push(u);
st.push(v);
f=true;
break;
}
if(f==false) ans.push_back(u);
}
for(int i=ans.size()-1;i;--i){
int u = ans[i];
int v = ans[i-1];
printf("%s",val[u][v].front().c_str());
val[u][v].pop();
if(i!=1) printf(".");
else puts("");
}
}
return 0;
}

POJ 2337 Catenyms(有向图的欧拉通路)的更多相关文章

  1. hdu1116有向图判断欧拉通路判断

    Play on Words Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  2. Colored Sticks POJ - 2513 并查集+欧拉通路+字典树hash

    题意:给出很多很多很多很多个棒子 左右各有颜色(给出的是单词) 相同颜色的可以接在一起,问是否存在一种 方法可以使得所以棒子连在一起 思路:就是一个判欧拉通路的题目,欧拉通路存在:没奇度顶点   或者 ...

  3. POJ - 2513 Colored Sticks(欧拉通路+并查集+字典树)

    https://vjudge.net/problem/POJ-2513 题解转载自:優YoU  http://user.qzone.qq.com/289065406/blog/1304742541 题 ...

  4. POJ 1386 Play on Words(有向欧拉通路 连通图)

    题意  见下方中文翻译 每一个单词能够看成首尾两个字母相连的一条边  然后就是输入m条边  推断是否能构成有向欧拉通路了 有向图存在欧拉通路的充要条件: 1. 有向图的基图连通: 2. 全部点的出度和 ...

  5. Poj 2337 Catenyms(有向图DFS求欧拉通路)

    题意: 给定n个单词, 问是否存在一条欧拉通路(如acm,matal,lack), 如果存在, 输出字典序最小的一条. 分析: 这题可以看作http://www.cnblogs.com/Jadon97 ...

  6. POJ 1300 欧拉通路&欧拉回路

    系统的学习一遍图论!从这篇博客开始! 先介绍一些概念. 无向图: G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路. 如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路. 具有 ...

  7. poj 2513 连接火柴 字典树+欧拉通路 好题

    Colored Sticks Time Limit: 5000MS   Memory Limit: 128000K Total Submissions: 27134   Accepted: 7186 ...

  8. POJ 2513 无向欧拉通路+字典树+并查集

    题目大意: 有一堆头尾均有颜色的木条,要让它们拼接在一起,拼接处颜色要保证相同,问是否能够实现 这道题我一开始利用map<string,int>来对颜色进行赋值,好进行后面的并查操作以及欧 ...

  9. poj2513- Colored Sticks 字典树+欧拉通路判断

    题目链接:http://poj.org/problem?id=2513 思路很容易想到就是判断欧拉通路 预处理时用字典树将每个单词和数字对应即可 刚开始在并查集处理的时候出错了 代码: #includ ...

随机推荐

  1. 【三石jQuery视频教程】01.图片循环展示_再次重发

    之前的文章,由于在博文的底部放有微信公众号的缘故,被管理员判定为: 您好,您的这篇博文内容本身没什么问题,但是,在博文底部存在推广信息内容.... 你们也没告知到底是哪条触犯了博客园的规矩,我就把底部 ...

  2. JS组件系列——使用HTML标签的data属性初始化JS组件

    前言:最近使用bootstrap组件的时候发现一个易用性问题,很多简单的组件初始化都需要在JS里面写很多的初始化代码,比如一个简单的select标签,因为仅仅只是需要从后台获取数据填充到option里 ...

  3. FFT

    void FFT(complex a[],int n,int fl){ ,j=n/;i<n;i++){ if (i<j) {complex t=a[i];a[i]=a[j];a[j]=t; ...

  4. Maven使用archetype迅速生成项目骨架

    archetype意思是"原型",相当于项目模板.archetype是maven的一个插件,相当于模板工具包. 一个十分重要的mvn指令:mvn 插件名:目标名maven自带三个内 ...

  5. HIbernate的property-ref属性

    为公司之前的一个公交卡系统修改bug: 通过排查发现, 卡类型表和卡等级表是一对多的关系, 但是卡等级表中没有字段引用卡类型表的主键,而是引用了卡类型表中非主键的另外两个字段 通过查看hibernat ...

  6. 如何完全卸载(Mac&Windows)office 365 ProPlus

    Q: 如何完全卸载office 365 ProPlus,如果用户使用之前的office版本没有卸载干净(配置文件中保持了原有的Key)会造成新安装的office 365 ProPlus 或者最新版的o ...

  7. 黄聪:phpexcel中文教程-设置表格字体颜色背景样式、数据格式、对齐方式、添加图片、批注、文字块、合并拆分单元格、单元格密码保护

    首先到phpexcel官网上下载最新的phpexcel类,下周解压缩一个classes文件夹,里面包含了PHPExcel.php和PHPExcel的文件夹,这个类文件和文件夹是我们需要的,把class ...

  8. EL表达式怎么获取Map的动态key?

    缘由 El表达式在调用Map的时候,后台传过来的Map的key不一定是一个固定的值,需要根据另外一个对象的id作为key来put,或者更加复杂的组合id+"string"作为一个k ...

  9. CUDA程序设计(一)

    为什么需要GPU 几年前我启动并主导了一个项目,当时还在谷歌,这个项目叫谷歌大脑.该项目利用谷歌的计算基础设施来构建神经网络. 规模大概比之前的神经网络扩大了一百倍,我们的方法是用约一千台电脑.这确实 ...

  10. CSS-背景渐变的兼容写法

    background-image: -moz-linear-gradient(top, rgba(0,0,0,0), rgba(0,0,0,0.5) 75%); background-image: - ...