图文来源:https://www.cnblogs.com/chengxiao/p/6129630.html

堆排序是利用这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。堆排序是利用这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。

  堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。如下图:

同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子

该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:

大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]  

小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]  

接下来,我们来看看堆排序的基本思想及基本步骤:

堆排序基本思想及步骤

堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了

步骤一 构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。

  a.假设给定无序序列结构如下

2.此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。

3.

找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。

这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

此时,我们就将一个无需序列构造成了一个大顶堆。

步骤二 将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

a.将堆顶元素9和末尾元素4进行交换

b.重新调整结构,使其继续满足堆定义

c.再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.

后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

再简单总结下堆排序的基本思路:

  a.将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;

  b.将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;

  c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

算法稳定性

堆排序是一种不稳定的排序方法。

因为在堆的调整过程中,关键字进行比较和交换所走的是该结点到叶子结点的一条路径,

因此对于相同的关键字就可能出现排在后面的关键字被交换到前面来的情况。

js代码实现堆排序

let dat=[1,5, 8, 10, 3, 2, 18, 17, 9];
//生成大顶堆
function adjustHeap(arr,i,len){
//将当前值保存
var temp=arr[i];
//从i结点的左子结点开始,也就是2i+1处开始
for(var j=2*i+1;j<len;j=2*j+1){
//如果左子结点小于右子结点,j指向右子结点
if((j+1<len)&&arr[j]<arr[j+1]){
j++;
}
//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)值和索引都赋值
if(arr[j]>temp){
arr[i]=arr[j];
i=j;
}else{
break;
}
}
arr[i]=temp; //将temp值放到最终的位置 }
function heapSort(data) {
//构造大顶堆
//此时我们从最后一个非叶子结点开始,叶结点自然不用调整
////从第一个非叶子结点从下至上,从右至左调整结构
for(var i=Math.floor(data.length/2-1);i>=0;i--){
adjustHeap(data,i,data.length);
}
// console.log(data);
//交换堆顶元素与末尾元素;不算最后一个元素,重新调整堆
for(var k=data.length-1;k>0;k--){
//将堆顶元素与末尾元素进行交换
[data[0],data[k]]=[data[k],data[0]];
// console.log(data);
//不算最后一个元素,重新对堆进行调整
adjustHeap(data,0,k);
//此处不用向上面调整一样for循环,因为此处只需要调整顶点,其他点已在上一步调整好,从顶点再往下调整,
}
return data;
}
var sortedData=heapSort(dat);
console.log(sortedData);

堆排序原理及其js实现的更多相关文章

  1. paip.关于动画特效原理 html js 框架总结

    paip.关于动画特效原理 html js 框架总结 1. 动画框架的来源:flex,jqueryui 3 2. 特效的分类 3 2.1. Property effects 动态改变一个或多个目标对象 ...

  2. Atitit sleep原理 node.js sleep解决方案 timer

    Atitit  sleep原理  node.js sleep解决方案  timer sleep()的实现分为三步: 1.注册一个信号signal(SIGALRM,handler).接收内核给出的一个信 ...

  3. Atitit.提升软件Web应用程序 app性能的方法原理 h5 js java c# php python android .net

    Atitit.提升软件Web应用程序 app性能的方法原理 h5 js java c# php python android .net 1. 提升单例有能力的1 2. 减少工作数量2 2.1. 减少距 ...

  4. 前端与编译原理 用js去运行js代码 js2run

    # 前端与编译原理 用js去运行js代码 js2run 前端与编译原理似乎相隔甚远,各种热门的框架都学不过来,那能顾及到这么多底层呢,前端开发者们似乎对编译原理的影响仅仅是"抽象语法树&qu ...

  5. 理解rem实现响应式布局原理及js动态计算rem

    前言 移动端布局中,童鞋们会使用到rem作为css单位进行不同手机屏幕大小上的适配.那么来讲讲rem在其中起的作用和如何动态设置rem的值. 1.什么是rem rem是相对于根元素(html标签)的字 ...

  6. 快速排序算法原理及其js实现

    要说快排的原理,通俗点说就是把一个事情,分成很多小事情来处理,分治的思想. 假设我们现在对“6  1  2 7  9  3  4  5 10  8”这10个数进行排序.首先在这个序列中随便找一个数作为 ...

  7. 谷歌验证器的原理及JS实现

    阅读本篇文章你可以了解到谷歌验证器的实现原理,并且可以自己使用node.js实现支持谷歌验证器的两步验证. 这两年发现身边的很多应用和网站纷纷支持两步验证,并且呼吁用户使用两步验证. 并且发现,除了A ...

  8. 前端与编译原理——用JS写一个JS解释器

    说起编译原理,印象往往只停留在本科时那些枯燥的课程和晦涩的概念.作为前端开发者,编译原理似乎离我们很远,对它的理解很可能仅仅局限于"抽象语法树(AST)".但这仅仅是个开头而已.编 ...

  9. 常见排序算法原理及JS代码实现

    目录 数组 sort() 方法 冒泡排序 选择排序 插入排序 希尔排序 归并排序 堆排序 快速排序 创建时间:2020-08-07 本文只是将作者学习的过程以及算法理解进行简单的分享,提供多一个角度的 ...

随机推荐

  1. KindEditor使用过程中,用JQ提交表单时,获取不到编辑器的内容

    首先要说明的是.在使用提交button直接提交时.编辑器的内容是能够正常获取的,而使用 jq或js ,如$("#form").submit(),提交时,则编辑器的内容是无法获取的. ...

  2. UML之实现图

    我们前面学过的用例图.类图.活动图.顺序图和协作图都描写叙述了逻辑和设计方面的信息.那么如今我们来学习和实现有关的两个图:构件图和部署图. 实现图用来描写叙述实现方面的信息,它从系统的层次来描写叙述下 ...

  3. Android之键盘监听的执行机理【看清键盘监听的本质】【入门版】

    以EditText为例: 1.Activity本身也有按键监听 editText按键监听与Activity按键监听关系: Activity本身也有按键监听 并且分按下和松开两个事件监听 editTex ...

  4. CSVReader

    从网上找了一个开源的东东 ,网址 https://www.csvreader.com/

  5. 2016/05/23 thinkphp M方法和D方法的区别

    M方法和D方法的区别 ThinkPHP 中M方法和D方法都用于实例化一个模型类,M方法 用于高效实例化一个基础模型类,而 D方法 用于实例化一个用户定义模型类. 使用M方法 如果是如下情况,请考虑使用 ...

  6. POI异步导入Excel兼容xsl和xlsx

    项目架构:spring+struts2+hibernate4+oracle 需求:用户导入excel文件,导入到相应的数据表中,要求提供导入模板,支持xls和xlsx文件 思路分析: 1.提供一个下载 ...

  7. the JSON object must be str, not 'bytes'

    { "ErrorDump": "the JSON object must be str, not 'bytes'", "StatusCode" ...

  8. mysql sakila 执行失败

    1.下载 https://dev.mysql.com/doc/index-other.html 2.解压 3.将解压的文件放入某个位置,必须tmp下面 4.登录mysql 进行source处理 mys ...

  9. hdu 5534

    题目描述:n个节点度数之和为n-2,每个节点预分配了1个度,任意分配度数是否有可能形成树? 从1到n节点,考虑树的形状,考虑分配给当前节点i的度数,并且注意到当前节点的度数不会影响其他节点(之前或者之 ...

  10. 类似查询mysql数据库的查询XML的JS类

    一个快捷操作XML数据库的Javascript接口对象,包含select.count.tables.fields等方法,能够像操作mysql等其它数据库一样操作XML数据库. if(document. ...