Kemans算法及其Python 实现
算法优缺点:
优点:容易实现
缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢
使用数据类型:数值型数据
算法思想
k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。
1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等
2.然后我们需要选择最初的聚类点(或者叫质心),这里的选择一般是随机选择的,代码中的是在数据范围内随机选择,另一种是随机选择数据中的点。这些点的选择会很大程度上影响到最终的结果,也就是说运气不好的话就到局部最小值去了。而且该算法对非球状簇的分类比较差。这里有两种处理方法,一种是多次取均值,另一种则是后面的改进算法(bisecting K-means)
3.终于我们开始进入正题了,接下来我们会把数据集中所有的点都计算下与这些质心的距离,把它们分到离它们质心最近的那一类中去。完成后我们则需要将每个簇算出平均值,用这个点作为新的质心。反复重复这两步,直到收敛我们就得到了最终的结果。
函数
loadDataSet(fileName)
从文件中读取数据集distEclud(vecA, vecB)
计算距离,这里用的是欧氏距离,当然其他合理的距离都是可以的randCent(dataSet, k)
随机生成初始的质心,这里是虽具选取数据范围内的点kMeans(dataSet, k, distMeas=distEclud, createCent=randCent)
kmeans算法,输入数据和k值。后面两个事可选的距离计算方式和初始质心的选择方式show(dataSet, k, centroids, clusterAssment)
可视化结果
#coding=utf-8
from numpy import * def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float, curLine)
dataMat.append(fltLine)
return dataMat #计算两个向量的距离,用的是欧几里得距离
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #随机生成初始的质心(ng的课说的初始方式是随机选K个点)
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))
for j in range(n):
minJ = min(dataSet[:,j])
rangeJ = float(max(array(dataSet)[:,j]) - minJ)
centroids[:,j] = minJ + rangeJ * random.rand(k,1)
return centroids def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))#create mat to assign data points
#to a centroid, also holds SE of each point
centroids = createCent(dataSet, k)
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf
minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex:
clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print centroids
for cent in range(k):#recalculate centroids
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment def show(dataSet, k, centroids, clusterAssment):
from matplotlib import pyplot as plt
numSamples, dim = dataSet.shape
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
for i in xrange(numSamples):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
plt.show() def main():
dataMat = mat(loadDataSet('testSet.txt'))
myCentroids, clustAssing= kMeans(dataMat,4)
print myCentroids
show(dataMat, 4, myCentroids, clustAssing) if __name__ == '__main__':
main()
参考链接:http://www.cnblogs.com/MrLJC/p/4127553.html
Kemans算法及其Python 实现的更多相关文章
- 八大排序算法的 Python 实现
转载: 八大排序算法的 Python 实现 本文用Python实现了插入排序.希尔排序.冒泡排序.快速排序.直接选择排序.堆排序.归并排序.基数排序. 1.插入排序 描述 插入排序的基本操作就是将一个 ...
- 数据关联分析 association analysis (Aprior算法,python代码)
1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association a ...
- 机器学习算法与Python实践之(四)支持向量机(SVM)实现
机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/ ...
- 机器学习算法与Python实践之(三)支持向量机(SVM)进阶
机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/ ...
- 机器学习算法与Python实践之(二)支持向量机(SVM)初级
机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/ ...
- 常用排序算法的python实现和性能分析
常用排序算法的python实现和性能分析 一年一度的换工作高峰又到了,HR大概每天都塞几份简历过来,基本上一天安排两个面试的话,当天就只能加班干活了.趁着面试别人的机会,自己也把一些基础算法和一些面试 ...
- 分类算法——k最近邻算法(Python实现)(文末附工程源代码)
kNN算法原理 k最近邻(k-Nearest Neighbor)算法是比较简单的机器学习算法.它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本在特征空间中的k个最近邻(最相似)的样 ...
- 机器学习算法与Python实践之(五)k均值聚类(k-means)
机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学 ...
- 狄克斯特拉算法(Python实现)
概述 狄克斯特拉算法--用于在加权图中找到最短路径 ps: 广度优先搜索--用于解决非加权图的最短路径问题 存在负权边时--贝尔曼-福德算法 下面是来自维基百科的权威解释. 戴克斯特拉算法(英语:Di ...
随机推荐
- 12. KEY_COLUMN_USAGE
12. KEY_COLUMN_USAGE KEY_COLUMN_USAGE表描述哪些键列具有约束. KEY_COLUMN_USAGE表有以下列: CONSTRAINT_CATALOG :约束所属目录的 ...
- LeetCode(78) Subsets
题目 Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a subset m ...
- 使用MyBatista----上传图像
使用MyBatis上传图像,使用的是Oracle的数据库表,有一个TEACHER表,有7列,有1列是存储图片的,类型用BLOB,最大容量是4G,以二进制的形式写入数据库表. 建立这个表的对应实体类Te ...
- 大数据学习——hdfs客户端操作
package cn.itcast.hdfs; import org.apache.commons.io.IOUtils; import org.apache.hadoop.conf.Configur ...
- zoj 1763 A Simple Question of Chemistry
A Simple Question of Chemistry Time Limit: 2 Seconds Memory Limit: 65536 KB Your chemistry lab ...
- 80. Hibernate 5.0命名策略使用naming-strategy 不起作用【从零开始学Spring Boot】
[原创文章,转载请注明出处] 事情的起因:一不小心从1.3.3升级到了1.4.0版本,结果就碰到了各种悲催的事情了,好吧,Hibernate5.0的新特性就是其中一个坑,我们会发现我们配置的namin ...
- (4)主成分分析Principal Component Analysis——PCA
主成分分析Principal Component Analysis 降维除了便于计算,另一个作用就是便于可视化. 主成分分析-->降维--> 方差:描述样本整体分布的疏密,方差越大-> ...
- 博弈 Nim问题 POJ2234
定义: 通常的Nim游戏的定义是这样的:有若干堆石子,每堆石子的数量都是有限的,合法的移动是 “选择一堆石子并拿走若干颗(不能不拿)”,如果轮到某个人时所有的石子堆都已经被拿空了, 则判负(因为他此刻 ...
- [Usaco2006 Nov]Bad Hair Day 乱发节
Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 1268 Solved: 625[Submit][Status][Discuss] Description ...
- Android应用程序项目结构
Android应用程序项目结构 [src]:JAVA源代码目录 [gen]:由系统自动生成的JAVA源码文件,不可修改,只可查看和使用 加载的和依赖的类库 [assets]:本地存储文件的一个文件夹 ...