85 down vote favorite

31

What explains the difference in behavior of boolean and bitwise operations on lists vs numpy.arrays?

I'm getting confused about the appropriate use of the '&' vs 'and' in python, illustrated in the following simple examples.

    mylist1 = [True,  True,  True,  False,  True]
mylist2 = [False, True, False, True, False] >>> len(mylist1) == len(mylist2)
True # ---- Example 1 ----
>>>mylist1 and mylist2
[False, True, False, True, False]
#I am confused: I would have expected [False, True, False, False, False] # ---- Example 2 ----
>>>mylist1 & mylist2
*** TypeError: unsupported operand type(s) for &: 'list' and 'list'
#I am confused: Why not just like example 1? # ---- Example 3 ----
>>>import numpy as np >>> np.array(mylist1) and np.array(mylist2)
*** ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
#I am confused: Why not just like Example 4? # ---- Example 4 ----
>>> np.array(mylist1) & np.array(mylist2)
array([False, True, False, False, False], dtype=bool)
#This is the output I was expecting!

This answer, and this answer both helped me understand that 'and' is a boolean operation but '&' is a bitwise operation.

I was reading some information to better understand the concept of bitwise operations, but I am struggling to use that information to make sense of my above 4 examples.

Note, in my particular situation, my desired output is a newlist where:

    len(newlist) == len(mylist1)
newlist[i] == (mylist1[i] and mylist2[i]) #for every element of newlist

Example 4, above, led me to my desired output, so that is fine.

But I am left feeling confused about when/how/why I should use 'and' vs '&'. Why do lists and numpy arrays behave differently with these operators?

Can anyone help me understand the difference between boolean and bitwise operations to explain why they handle lists and numpy.arrays differently?

I just want to make sure I continue to use these operations correctly going forward. Thanks a lot for the help!

Numpy version 1.7.1

python 2.7

References all inline with text.

EDITS

1) Thanks @delnan for pointing out that in my original examples I had am ambiguity that was masking my deeper confusion. I have updated my examples to clarify my question.

asked Mar 25 '14 at 21:18
rysqui

9661919
  • 4
    Example 1 only appears to give the correct output. It actually just returns the second list unaltered. Try some other lists, in particular anything where the second list contains a True in a position that's False in the first list: Boolean logic dictates a False output at that position, but you'll get a True. – user395760 Mar 25 '14 at 21:22
  •  
    @delnan Thanks for noticing the ambiguity in my examples. I have updated my examples to highlight my confusion and focus on the aspect of this behavior that I do not understand. I'm clearly missing something important, because I did not expect the output of Example 1. – rysqui Mar 25 '14 at 21:37
  • 2
    In Numpy there's np.bitwise_and() and np.logical_and() and friends to avoid confusion. – Dietrich Mar 25 '14 at 21:54
  •  
    In example 1, mylist1 and mylist2 does not output the same result as mylist2 and mylist1, since what is being returned is the second list as pointed out by delnan. – user2015487 Feb 16 '16 at 17:58
  • 1
    Possible duplicate of Python: Boolean operators vs Bitwise operators – Oliver Ni Nov 6 '16 at 16:09

7 Answers

up vote 72 down vote accepted

and tests whether both expressions are logically True while & (when used with True/False values) tests if both are True.

In Python, empty built-in objects are typically treated as logically False while non-empty built-ins are logically True. This facilitates the common use case where you want to do something if a list is empty and something else if the list is not. Note that this means that the list [False] is logically True:

>>> if [False]:
... print 'True'
...
True

So in Example 1, the first list is non-empty and therefore logically True, so the truth value of the and is the same as that of the second list. (In our case, the second list is non-empty and therefore logically True, but identifying that would require an unnecessary step of calculation.)

For example 2, lists cannot meaningfully be combined in a bitwise fashion because they can contain arbitrary unlike elements. Things that can be combined bitwise include: Trues and Falses, integers.

NumPy objects, by contrast, support vectorized calculations. That is, they let you perform the same operations on multiple pieces of data.

Example 3 fails because NumPy arrays (of length > 1) have no truth value as this prevents vector-based logic confusion.

Example 4 is simply a vectorized bit and operation.

Bottom Line

  • If you are not dealing with arrays and are not performing math manipulations of integers, you probably want and.

  • If you have vectors of truth values that you wish to combine, use numpy with &.

关于panda中dataframe的与&运算*(stackoverflow高票答案)的更多相关文章

  1. Java中的Bigdecimal类型运算

    Java中的Bigdecimal类型运算 双精度浮点型变量double可以处理16位有效数.在实际应用中,需要对更大或者更小的数进行运算和处理.Java在java.math包中提 供的API类BigD ...

  2. 【转】Cocoa中的位与位运算

    转自:http://www.tuicool.com/articles/niEVjy 介绍 位操作是程序设计中对位模式或二进制数的一元和二元操作. 在许多古老的微处理器上, 位运算比加减运算略快, 通常 ...

  3. python中 and 和 or 运算的核心思想 ——— 短路逻辑

    python中 and 和 or 运算的核心思想 --- 短路逻辑 1. 包含一个逻辑运算符 首先从基本的概念着手,python中哪些对象会被当成 False 呢?而哪些又是 True 呢? 在Pyt ...

  4. Python语言中的按位运算

    (转)位操作是程序设计中对位模式或二进制数的一元和二元操作. 在许多古老的微处理器上, 位运算比加减运算略快, 通常位运算比乘除法运算要快很多. 在现代架构中, 情况并非如此:位运算的运算速度通常与加 ...

  5. pandas DataFrame(4)-向量化运算

    pandas DataFrame进行向量化运算时,是根据行和列的索引值进行计算的,而不是行和列的位置: 1. 行和列索引一致: import pandas as pd df1 = pd.DataFra ...

  6. java中多个数字运算后值不对(失真)处理方法

    最近遇到一个bug ,在java里面计算两个数字相减,633011.20-31296.30 得到的结果居然是601714.8999999999,丢失精度了,原来这是Java浮点运算的一个bug. 解决 ...

  7. js中多个数字运算后值不对(失真)处理方法

    最近遇到一个bug ,在js里面计算两个数字相减,633011.20-31296.30 得到的结果居然是601714.89,领导不乐意了说怎么少了0.01,我一听,噶卵达,来达鬼,不可能啊,我Goog ...

  8. python中实现三目运算

    python中没有其他语言中的三元表达式,不过有类似的实现方法 如: a = 1 b =2 k = 3 if a>b else 4 上面的代码就是python中实现三目运算的一个小demo, 如 ...

  9. Pandas中DataFrame修改列名

    Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...

随机推荐

  1. 数据切分——Atlas介绍

    Atlas是由 Qihoo 360公司Web平台部基础架构团队开发维护的一个基于MySQL协议的数据中间层项目.它在MySQL官方推出的MySQL-Proxy 0.8.2版本号的基础上,改动了大量bu ...

  2. 数学之路-python计算实战(17)-机器视觉-滤波去噪(中值滤波)

    Blurs an image using the median filter. C++: void medianBlur(InputArray src, OutputArray dst, int ks ...

  3. HDU 5858Hard problem

    Hard problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  4. tiny4412学习(一)之从零搭建linux系统(烧写uboot、内核进emmc+uboot启动内核)【转】

    本文转载自:http://blog.csdn.net/fengyuwuzu0519/article/details/74080109 版权声明:本文为博主原创文章,转载请注明http://blog.c ...

  5. 【Poj1325】Machine Schedule机器调度

    目录 List Description Input Output Sample Input Sample Output HINT Solution Code Position: http://poj. ...

  6. python 循环高级用法 [expression for x in X [if condition] for y in Y [if condition] ... for n in N [if condition] ]按照从左至右的顺序,分别是外层循环到内层循环

    高级语法 除了像上面介绍的 [x ** 2 for x in L] 这种基本语法之外,列表推导式还有一些高级的扩展. 4.1. 带有if语句 我们可以在 for 语句后面跟上一个 if 判断语句,用于 ...

  7. POJ 3268 最短路应用

    POJ3268 题意很简单 正向图跑一遍SPFA 反向图再跑一边SPFA 找最大值即可. #include<iostream> #include<cstdio> #includ ...

  8. error: undefined reference to 'property_set (转载)

    转自:http://blog.csdn.net/u011589606/article/details/23474241 in the cpp file, please include #include ...

  9. [Swift通天遁地]六、智能布局-(3)添加edges/top/bottom/leading/trailing的约束

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  10. tp 3.2 组合查询, 字符串模式查询

    $User = M("User"); // 实例化User对象 $map['id'] = array('neq',1); $map['name'] = 'ok'; $map['_s ...