关于panda中dataframe的与&运算*(stackoverflow高票答案)
What explains the difference in behavior of boolean and bitwise operations on lists vs numpy.arrays?
I'm getting confused about the appropriate use of the '&
' vs 'and
' in python, illustrated in the following simple examples.
mylist1 = [True, True, True, False, True]
mylist2 = [False, True, False, True, False]
>>> len(mylist1) == len(mylist2)
True
# ---- Example 1 ----
>>>mylist1 and mylist2
[False, True, False, True, False]
#I am confused: I would have expected [False, True, False, False, False]
# ---- Example 2 ----
>>>mylist1 & mylist2
*** TypeError: unsupported operand type(s) for &: 'list' and 'list'
#I am confused: Why not just like example 1?
# ---- Example 3 ----
>>>import numpy as np
>>> np.array(mylist1) and np.array(mylist2)
*** ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
#I am confused: Why not just like Example 4?
# ---- Example 4 ----
>>> np.array(mylist1) & np.array(mylist2)
array([False, True, False, False, False], dtype=bool)
#This is the output I was expecting!
This answer, and this answer both helped me understand that 'and' is a boolean operation but '&' is a bitwise operation.
I was reading some information to better understand the concept of bitwise operations, but I am struggling to use that information to make sense of my above 4 examples.
Note, in my particular situation, my desired output is a newlist where:
len(newlist) == len(mylist1)
newlist[i] == (mylist1[i] and mylist2[i]) #for every element of newlist
Example 4, above, led me to my desired output, so that is fine.
But I am left feeling confused about when/how/why I should use 'and' vs '&'. Why do lists and numpy arrays behave differently with these operators?
Can anyone help me understand the difference between boolean and bitwise operations to explain why they handle lists and numpy.arrays differently?
I just want to make sure I continue to use these operations correctly going forward. Thanks a lot for the help!
Numpy version 1.7.1
python 2.7
References all inline with text.
EDITS
1) Thanks @delnan for pointing out that in my original examples I had am ambiguity that was masking my deeper confusion. I have updated my examples to clarify my question.
- 4Example 1 only appears to give the correct output. It actually just returns the second list unaltered. Try some other lists, in particular anything where the second list contains a
True
in a position that'sFalse
in the first list: Boolean logic dictates aFalse
output at that position, but you'll get aTrue
. – user395760 Mar 25 '14 at 21:22 - @delnan Thanks for noticing the ambiguity in my examples. I have updated my examples to highlight my confusion and focus on the aspect of this behavior that I do not understand. I'm clearly missing something important, because I did not expect the output of Example 1. – rysqui Mar 25 '14 at 21:37
- 2In Numpy there's
np.bitwise_and()
andnp.logical_and()
and friends to avoid confusion. – Dietrich Mar 25 '14 at 21:54 - In example 1,
mylist1 and mylist2
does not output the same result asmylist2 and mylist1
, since what is being returned is the second list as pointed out by delnan. – user2015487 Feb 16 '16 at 17:58 - 1Possible duplicate of Python: Boolean operators vs Bitwise operators – Oliver Ni Nov 6 '16 at 16:09
and
tests whether both expressions are logically True
while &
(when used with True
/False
values) tests if both are True
.
In Python, empty built-in objects are typically treated as logically False
while non-empty built-ins are logically True
. This facilitates the common use case where you want to do something if a list is empty and something else if the list is not. Note that this means that the list [False] is logically True
:
>>> if [False]:
... print 'True'
...
True
So in Example 1, the first list is non-empty and therefore logically True
, so the truth value of the and
is the same as that of the second list. (In our case, the second list is non-empty and therefore logically True
, but identifying that would require an unnecessary step of calculation.)
For example 2, lists cannot meaningfully be combined in a bitwise fashion because they can contain arbitrary unlike elements. Things that can be combined bitwise include: Trues and Falses, integers.
NumPy objects, by contrast, support vectorized calculations. That is, they let you perform the same operations on multiple pieces of data.
Example 3 fails because NumPy arrays (of length > 1) have no truth value as this prevents vector-based logic confusion.
Example 4 is simply a vectorized bit and
operation.
Bottom Line
If you are not dealing with arrays and are not performing math manipulations of integers, you probably want
and
.If you have vectors of truth values that you wish to combine, use
numpy
with&
.
关于panda中dataframe的与&运算*(stackoverflow高票答案)的更多相关文章
- Java中的Bigdecimal类型运算
Java中的Bigdecimal类型运算 双精度浮点型变量double可以处理16位有效数.在实际应用中,需要对更大或者更小的数进行运算和处理.Java在java.math包中提 供的API类BigD ...
- 【转】Cocoa中的位与位运算
转自:http://www.tuicool.com/articles/niEVjy 介绍 位操作是程序设计中对位模式或二进制数的一元和二元操作. 在许多古老的微处理器上, 位运算比加减运算略快, 通常 ...
- python中 and 和 or 运算的核心思想 ——— 短路逻辑
python中 and 和 or 运算的核心思想 --- 短路逻辑 1. 包含一个逻辑运算符 首先从基本的概念着手,python中哪些对象会被当成 False 呢?而哪些又是 True 呢? 在Pyt ...
- Python语言中的按位运算
(转)位操作是程序设计中对位模式或二进制数的一元和二元操作. 在许多古老的微处理器上, 位运算比加减运算略快, 通常位运算比乘除法运算要快很多. 在现代架构中, 情况并非如此:位运算的运算速度通常与加 ...
- pandas DataFrame(4)-向量化运算
pandas DataFrame进行向量化运算时,是根据行和列的索引值进行计算的,而不是行和列的位置: 1. 行和列索引一致: import pandas as pd df1 = pd.DataFra ...
- java中多个数字运算后值不对(失真)处理方法
最近遇到一个bug ,在java里面计算两个数字相减,633011.20-31296.30 得到的结果居然是601714.8999999999,丢失精度了,原来这是Java浮点运算的一个bug. 解决 ...
- js中多个数字运算后值不对(失真)处理方法
最近遇到一个bug ,在js里面计算两个数字相减,633011.20-31296.30 得到的结果居然是601714.89,领导不乐意了说怎么少了0.01,我一听,噶卵达,来达鬼,不可能啊,我Goog ...
- python中实现三目运算
python中没有其他语言中的三元表达式,不过有类似的实现方法 如: a = 1 b =2 k = 3 if a>b else 4 上面的代码就是python中实现三目运算的一个小demo, 如 ...
- Pandas中DataFrame修改列名
Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...
随机推荐
- 转 BlockingQueue(阻塞队列)详解
转自 http://wsmajunfeng.iteye.com/blog/1629354 前言: 在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全“传输” ...
- openGl学习之基本图元
从本篇開始,会给出一些代码实例,所以要配置好编译环境. 环境配置: vs2012下配置链接http://www.cnblogs.com/dreampursuer/archive/2014/05/27/ ...
- linux驱动之设备号与创建设备节点
设备号: 1.自己主动分配 major = register_chrdev(0,"first_drv",&first_sdv_fops);//注冊 注冊设备时给设备号写0, ...
- java后端判断用户是否关注公众号
/** * 判断用户是否关注了公众号 * @param openid * @return */ public static boolean judgeIsFollow(String openid){ ...
- 为PhoneGap写一个android插件
为PhoneGap写一个android插件,要怎么做? 其实这句话应该反过来说,为android写一个PhoneGap插件,要怎么做? 这里以最简单的Hello World!为例,做个说明: 1.第一 ...
- springmvc的执行流程详解
1.什么是MVC MVC是Model View Controller的缩写,它是一个设计模式 2.springmvc执行流程详细介绍 第一步:发起请求到前端控制器(DispatcherServlet) ...
- 简析LCD1602液晶驱动及在Arduino上的实例实现
这几日在倒腾新到的Arduino,比起普通单片机来,感觉写程序太简单了.不过和外设打交道还是没那么容易,比如今天要说的看似简单的LCD1602液晶,却费了我一整天才基本搞懂,不过还是有一个小问题没有实 ...
- 【Hnoi2010】Bzoj2002 Bounce & Codevs2333 弹飞绵羊
Position: http://www.lydsy.com/JudgeOnline/problem.php?id=3143 http://codevs.cn/problem/2333/ Descri ...
- JSP-Runood:JSP 客户端请求
ylbtech-JSP-Runood:JSP 客户端请求 1.返回顶部 1. JSP 客户端请求 当浏览器请求一个网页时,它会向网络服务器发送一系列不能被直接读取的信息,因为这些信息是作为HTTP信息 ...
- 【高德地图API】Pivot控件中加载地图并禁止Pivot手势
如题,解决方案,参考[Windows phone应用开发[20]-禁止Pivot手势]http://www.cnblogs.com/chenkai/p/3408658.html. xaml代码清单 ...