6:
      LAZY 线段树有乘法的更新
   #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn = 101000;
long long value[maxn], mod;
struct SegNode {
    int left, right;
    long long sum, add, mul;
    int mid() {
        return (left + right) >> 1;
    }
    int size() {
        return right - left + 1;
    }
};
struct SegmentTree {
    SegNode tree[maxn*5];
    void pushUp(int idx) {
        tree[idx].sum = (tree[idx<<1].sum + tree[idx<<1|1].sum) % mod;
    }
    void pushDown(int idx) {
        tree[idx<<1].add = (tree[idx].mul % mod * tree[idx<<1].add % mod + tree[idx].add) % mod;
        tree[idx<<1|1].add = (tree[idx].mul % mod * tree[idx<<1|1].add % mod + tree[idx].add) % mod;
        tree[idx<<1].mul = tree[idx<<1].mul % mod * tree[idx].mul % mod;
        tree[idx<<1|1].mul = tree[idx<<1|1].mul % mod * tree[idx].mul % mod;
        tree[idx<<1].sum = (tree[idx<<1].sum % mod * tree[idx].mul % mod
            + tree[idx<<1].size() * tree[idx].add % mod) % mod;
        tree[idx<<1|1].sum = (tree[idx<<1|1].sum % mod * tree[idx].mul % mod
            + tree[idx<<1|1].size() * tree[idx].add % mod) % mod;
        tree[idx].add = 0;
        tree[idx].mul = 1;
    }
    void build(int left, int right, int idx) {
        tree[idx].left = left;
        tree[idx].right = right;
        tree[idx].sum = 0;
        tree[idx].mul = 1;
        tree[idx].add = 0;
        if (left == right) {
            tree[idx].sum = value[left] % mod;
            return ;
        }
        int mid = tree[idx].mid();
        build(left, mid, idx<<1);
        build(mid+1, right, idx<<1|1);
        pushUp(idx);
    }
    void update(int left, int right, int idx, int opt, long long val) {
        if (tree[idx].left == left && tree[idx].right == right) {
            if (opt == 1) {
                tree[idx].add = (tree[idx].add + val) % mod;
                tree[idx].sum = (tree[idx].sum + tree[idx].size() % mod * val) % mod;
            } else {
                tree[idx].add = tree[idx].add % mod * val % mod;
                tree[idx].mul = tree[idx].mul % mod * val % mod;
                tree[idx].sum = tree[idx].sum % mod * val % mod;
            }
            return ;
        }
        pushDown(idx);
        int mid = tree[idx].mid();
        if (right <= mid)
            update(left, right, idx<<1, opt, val);
        else if (left > mid)
            update(left, right, idx<<1|1, opt, val);
        else {
            update(left, mid, idx<<1, opt, val);
            update(mid+1, right, idx<<1|1, opt, val);
        }
        pushUp(idx);
    }
    long long query(int left, int right, int idx) {
        if (tree[idx].left == left && tree[idx].right == right) {
            return tree[idx].sum % mod;
        }
        pushDown(idx);
        int mid = tree[idx].mid();
        if (right <= mid)
            return query(left, right, idx<<1);
        else if (left > mid)
            return query(left, right, idx<<1|1);
        else {
            return (query(left, mid, idx<<1) % mod + query(mid+1, right, idx<<1|1));
        }
    }
};
SegmentTree tree;
int n, m;
void init() {
    scanf("%d %lld", &n, &mod);
    for (int i = 1; i <= n; i++)
        scanf("%lld", &value[i]);
    tree.build(1, n, 1);
}

BZOJ 1798:的更多相关文章

  1. BZOJ 1798 题解

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 5531  Solved: 1946[Submit ...

  2. bzoj 1798 [Ahoi2009]Seq 维护序列seq

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1798 线段树区间更新: 1. 区间同同时加上一个数 2. 区间同时乘以一个数 #inclu ...

  3. bzoj 1798 [Ahoi2009]Seq 维护序列seq(线段树+传标)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1798 [题意] 给定一个序列,要求提供区间乘/加,以及区间求和的操作 [思路] 线段树 ...

  4. BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )

    线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...

  5. bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 7773  Solved: 2792[Submit ...

  6. bzoj 1798 线段树

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 7163  Solved: 2587[Submit ...

  7. bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  8. bzoj 1798 双标记区间修改线段树

    #include<bits/stdc++.h> using namespace std; #define MAXN 100000 #define M ((L+R)>>1) #d ...

  9. bzoj 1798 维护序列seq

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1798 题解: 高级一点的线段树,加上了区间乘法运算,则需要增加一个数组mulv记录乘的因数 ...

  10. 值得一做》关于双标记线段树两三事BZOJ 1798 (NORMAL-)

    这是一道双标记线段树的题,很让人很好的预习/学习/复习线段树,我不知道它能让别人学习什么,反正让我对线段树的了解更加深刻. 题目没什么好讲的,程序也没什么好讲的,所以也没有什么题解,但是值得一做 给出 ...

随机推荐

  1. 洛谷 P2912 [USACO08OCT]牧场散步Pasture Walking

    题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures ...

  2. 洛谷 U10223 Cx大帝远征埃及

    题目背景 众所周知,Cx是一个宇宙大犇.Cx能文善武,一直在为大一统的实现而努力奋斗着.Cx将调用他的精锐军队,一个精锐士兵最多可以战胜十个埃及士兵.同时Cx是个爱才的人,他想要制定一份能使在占领埃及 ...

  3. Hadoop 安装过程中出现的问题

    1.hadoop-daemon.sh start namenode 启动失败 查看hadoop/logs 下面的日志 出现 2017-04-11 15:35:13,860 WARN org.apach ...

  4. Elasticsearch搜索含有数字标签的处理

    {"tag_id":“12345”} 在search的时候是完全匹配,因为Elasticsearch在处理这个的过程中把“123456”字符当成一个整体的数据,因此折腾了好久就是找 ...

  5. ES6(vue)对象词法扩展

    ES6 允许声明在对象字面量时使用简写语法,来初始化属性变量和函数的定义方法,并且允许在对象属性中进行计算操作: function getCar(make, model, value) { retur ...

  6. Windows 7桌面显示图标窗口句柄的获取

    在windows XP时代,我们获取桌面图标窗口的句柄往往用一下语句: HWND hwndParent = ::FindWindow( "Progman", "Progr ...

  7. 洛谷——P4932 浏览器

    P4932 浏览器 __stdcall给了你n个点,第i个点有权值x[i],对于两个点u和v,如果x[u] xor x[v]的结果在二进制表示下有奇数个1,那么在u和v之间连接一个Edge,现在__s ...

  8. opencv加载图片和视频

    一.加载图片: 1.先放一段最简单的加载图片的代码 import cv2 as cv #引用opencv库image = "D:/Image/test.jpg" #确定图片所在路径 ...

  9. EPT和VPID简介

    EPT(Extended Page Tables,扩展页表),属于Intel的第二代硬件虚拟化技术,它是针对内存管理单元(MMU)的虚拟化扩展.EPT降低了内存虚拟化的难度(与影子页表相比),也提升了 ...

  10. qt 窗体间通信

    利用qt的信号和槽,可以完成窗体间的通信,下面列出父子窗口利用信号和槽的相关代码. parent窗口: //parent.h #ifndef PARENT_H #define PARENT_H #in ...