6:
      LAZY 线段树有乘法的更新
   #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn = 101000;
long long value[maxn], mod;
struct SegNode {
    int left, right;
    long long sum, add, mul;
    int mid() {
        return (left + right) >> 1;
    }
    int size() {
        return right - left + 1;
    }
};
struct SegmentTree {
    SegNode tree[maxn*5];
    void pushUp(int idx) {
        tree[idx].sum = (tree[idx<<1].sum + tree[idx<<1|1].sum) % mod;
    }
    void pushDown(int idx) {
        tree[idx<<1].add = (tree[idx].mul % mod * tree[idx<<1].add % mod + tree[idx].add) % mod;
        tree[idx<<1|1].add = (tree[idx].mul % mod * tree[idx<<1|1].add % mod + tree[idx].add) % mod;
        tree[idx<<1].mul = tree[idx<<1].mul % mod * tree[idx].mul % mod;
        tree[idx<<1|1].mul = tree[idx<<1|1].mul % mod * tree[idx].mul % mod;
        tree[idx<<1].sum = (tree[idx<<1].sum % mod * tree[idx].mul % mod
            + tree[idx<<1].size() * tree[idx].add % mod) % mod;
        tree[idx<<1|1].sum = (tree[idx<<1|1].sum % mod * tree[idx].mul % mod
            + tree[idx<<1|1].size() * tree[idx].add % mod) % mod;
        tree[idx].add = 0;
        tree[idx].mul = 1;
    }
    void build(int left, int right, int idx) {
        tree[idx].left = left;
        tree[idx].right = right;
        tree[idx].sum = 0;
        tree[idx].mul = 1;
        tree[idx].add = 0;
        if (left == right) {
            tree[idx].sum = value[left] % mod;
            return ;
        }
        int mid = tree[idx].mid();
        build(left, mid, idx<<1);
        build(mid+1, right, idx<<1|1);
        pushUp(idx);
    }
    void update(int left, int right, int idx, int opt, long long val) {
        if (tree[idx].left == left && tree[idx].right == right) {
            if (opt == 1) {
                tree[idx].add = (tree[idx].add + val) % mod;
                tree[idx].sum = (tree[idx].sum + tree[idx].size() % mod * val) % mod;
            } else {
                tree[idx].add = tree[idx].add % mod * val % mod;
                tree[idx].mul = tree[idx].mul % mod * val % mod;
                tree[idx].sum = tree[idx].sum % mod * val % mod;
            }
            return ;
        }
        pushDown(idx);
        int mid = tree[idx].mid();
        if (right <= mid)
            update(left, right, idx<<1, opt, val);
        else if (left > mid)
            update(left, right, idx<<1|1, opt, val);
        else {
            update(left, mid, idx<<1, opt, val);
            update(mid+1, right, idx<<1|1, opt, val);
        }
        pushUp(idx);
    }
    long long query(int left, int right, int idx) {
        if (tree[idx].left == left && tree[idx].right == right) {
            return tree[idx].sum % mod;
        }
        pushDown(idx);
        int mid = tree[idx].mid();
        if (right <= mid)
            return query(left, right, idx<<1);
        else if (left > mid)
            return query(left, right, idx<<1|1);
        else {
            return (query(left, mid, idx<<1) % mod + query(mid+1, right, idx<<1|1));
        }
    }
};
SegmentTree tree;
int n, m;
void init() {
    scanf("%d %lld", &n, &mod);
    for (int i = 1; i <= n; i++)
        scanf("%lld", &value[i]);
    tree.build(1, n, 1);
}

BZOJ 1798:的更多相关文章

  1. BZOJ 1798 题解

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 5531  Solved: 1946[Submit ...

  2. bzoj 1798 [Ahoi2009]Seq 维护序列seq

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1798 线段树区间更新: 1. 区间同同时加上一个数 2. 区间同时乘以一个数 #inclu ...

  3. bzoj 1798 [Ahoi2009]Seq 维护序列seq(线段树+传标)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1798 [题意] 给定一个序列,要求提供区间乘/加,以及区间求和的操作 [思路] 线段树 ...

  4. BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )

    线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...

  5. bzoj 1798: [Ahoi2009]Seq 维护序列seq (线段树 ,多重标记下放)

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 7773  Solved: 2792[Submit ...

  6. bzoj 1798 线段树

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 7163  Solved: 2587[Submit ...

  7. bzoj 1798: [Ahoi2009]Seq 维护序列seq 线段树 区间乘法区间加法 区间求和

    1798: [Ahoi2009]Seq 维护序列seq Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  8. bzoj 1798 双标记区间修改线段树

    #include<bits/stdc++.h> using namespace std; #define MAXN 100000 #define M ((L+R)>>1) #d ...

  9. bzoj 1798 维护序列seq

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1798 题解: 高级一点的线段树,加上了区间乘法运算,则需要增加一个数组mulv记录乘的因数 ...

  10. 值得一做》关于双标记线段树两三事BZOJ 1798 (NORMAL-)

    这是一道双标记线段树的题,很让人很好的预习/学习/复习线段树,我不知道它能让别人学习什么,反正让我对线段树的了解更加深刻. 题目没什么好讲的,程序也没什么好讲的,所以也没有什么题解,但是值得一做 给出 ...

随机推荐

  1. PMP项目管理学习笔记(11)——范围管理之定义范围

    定义范围过程组 定义范围包含将项目分解为团队成员要完成的具体工作之前你需要知道的所有一切. 输入:需求文档.项目章程.组织过程资产 工具:辅助工作室.产品分析.代理方案识别.专家判断 辅助工作室: 与 ...

  2. 4.03 使用NULL代替默认值

    问题:在一个定义了默认值的列插入数据,并且需要不管该列的默认值是什么,都将该列值设为NULL.考虑一下下面的表: create table D (id interger default 0, foo ...

  3. EXPLAIN - 显示语句执行规划

    SYNOPSIS EXPLAIN [ ANALYZE ] [ VERBOSE ] statement DESCRIPTION 描述 这条命令显示PostgreSQL规划器为所提供的语句生成的执行规划. ...

  4. 筛选法 || POJ 3292 Semi-prime H-numbers

    5,9,13,……叫H-prime 一个数能且仅能由两个H-prime相乘得到,则为H-semi-prime 问1-n中的H-semi-prime有多少个 *解法:vis初始化为0代表H-prime, ...

  5. Java Web 之 Jsp 常用语法总结

    一.小脚本语法 <% code fragment %> 语法编写为XML的形式,效果相同,如下所示: <jsp:scriptlet> code fragment </js ...

  6. check.pl

    比对两个文件并纠错 #!/usr/bin/perl use strict; use warnings; ###############################################m ...

  7. 手把手入门docker (好多图)

    1.什么是docker? ---->我的理解是将许多应用一起打包成一个镜像,拿这个镜像去其他服务器上运行起来就可以.不需要单个单个去配置啦. 2.怎样在window下的安装. ---->刚 ...

  8. 深入Linux内核架构——进程管理和调度(上)

    如果系统只有一个处理器,那么给定时刻只有一个程序可以运行.在多处理器系统中,真正并行运行的进程数目取决于物理CPU的数目.内核和处理器建立了多任务的错觉,是通过以很短的间隔在系统运行的应用程序之间不停 ...

  9. Openstack实验笔记

    Openstack实验笔记 制作人:全心全意 Openstack:提供可靠的云部署方案及良好的扩展性 Openstack简单的说就是云操作系统,或者说是云管理平台,自身并不提供云服务,只是提供部署和管 ...

  10. apidoc利用代码注释书写文档

    个人博客同步文章 https://mr-houzi.com/2018/07/... apidoc是一款利用源代码中注释来创建RESTful Web API文档的工具.apidoc可用于C#,Go,Da ...