洛谷 P1955 程序自动分析
题目描述
在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。
考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x4≠x1,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。
输入输出格式
输入格式:
从文件prog.in中读入数据。
输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。
对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若�e=0,则该约束条件为xi≠xj;
输出格式:
输出到文件 prog.out 中。
输出文件包括t行。
输出文件的第 k行输出一个字符串“ YES” 或者“ NO”(不包含引号,字母全部大写),“ YES” 表示输入中的第k个问题判定为可以被满足,“ NO” 表示不可被满足。
输入输出样例
2
2
1 2 1
1 2 0
2
1 2 1
2 1 1
NO
YES
说明
【样例解释1】
在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。
在第二个问题中,约束条件为:x1=x2,x1=x2。这两个约束条件是等价的,可以被同时满足。
【样例说明2】
在第一个问题中,约束条件有三个:x1=x2,x2=x3,x3=x1。只需赋值使得x1=x1=x1,即可同时满足所有的约束条件。
在第二个问题中,约束条件有四个:x1=x2,x2=x3,x3=x4,x4≠x1。由前三个约束条件可以推出x1=x2=x3=x4,然而最后一个约束条件却要求x1≠x4,因此不可被满足。
【数据范围】
【时限2s,内存512M】
尽量不要用map map常数比较大
并查集+离散化
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <map> using namespace std;
int num,T,cnt,fa[],c[];
struct node
{
int a,b,c;
}e[];
bool flag=false;
int find_fa(int x){return x==fa[x]?x:fa[x]=find_fa(fa[x]);}
void qr(int &x)
{
x=;bool f=;
char ch=getchar();
while(ch>''||ch<'')
{
if(ch=='-') f=;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+(int)ch-;
ch=getchar();
}
x=f?(~x)+:x;
}
int main(int argc,char *argv[])
{
qr(T);
for(int n;T--;)
{
qr(n);
cnt=;num=;flag=false;
for(int i=;i<=n*;i++) fa[i]=i;
for(int i=;i<=n;i++)
{
qr(e[i].a);qr(e[i].b);qr(e[i].c);
c[++cnt]=e[i].a;
c[++cnt]=e[i].b;
}
sort(c+,c++cnt);
int size=unique(c+,c++cnt)-c-;
for(int i=;i<=n;i++)
{
e[i].a=lower_bound(c+,c++size,e[i].a)-c;
e[i].b=lower_bound(c+,c++size,e[i].b)-c;
}
for(int i=;i<=n;i++)
{
if(e[i].c==)
{
int fx=find_fa(e[i].a),fy=find_fa(e[i].b);
if(fx!=fy) fa[fy]=fx;
}
}
for(int i=;i<=n;i++)
{
if(!e[i].c)
{
int fx=find_fa(e[i].a),fy=find_fa(e[i].b);
if(fx==fy)
{
printf("NO\n");
flag=;
break;
}
}
}
if(!flag) printf("YES\n");
}
return ;
}
洛谷 P1955 程序自动分析的更多相关文章
- codevs4600 [NOI2015]程序自动分析==洛谷P1955 程序自动分析
4600 [NOI2015]程序自动分析 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 在实现 ...
- 洛谷P1955 程序自动分析 [NOI2015] 并查集
正解:并查集+离散化 解题报告: 传送门! 其实题目还挺水的,,,但我太傻逼了直接想挂了,,,所以感觉还是有个小坑点所以还是写个题解记录下我的傻逼QAQ 首先这题一看,就长得很像NOIp关押罪犯?然后 ...
- NOI2015 洛谷P1955 程序自动分析(并查集+离散化)
这可能是我目前做过的最简单的一道noi题目了...... 先对e=1的处理,用并查集:再对e=0查询,如果这两个在同一集合中,则为""NO",最后都满足的话输出" ...
- 洛谷 [P1995] 程序自动分析
并查集+ 离散化 首先本题的数据范围很大,需要离散化, STL离散化代码: //dat是原数据,id是编号,sub是数据的副本 sort(sub + 1, sub + tot + 1); size = ...
- 洛谷P1955 [NOI2015] 程序自动分析 [并查集,离散化]
题目传送门 题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或x ...
- 洛谷p1955[NOI2015]程序自动分析
题目: 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量 ...
- 程序自动分析(NOI2015)(洛谷P1955)题解
原题: 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量 ...
- 洛谷 P1955 [NOI2015]程序自动分析 题解
每日一题 day22 打卡 Analysis 离散化+并查集 先离散化所有的约束条件,再处理所有e=1的条件,将i的祖先和j的祖先合并到一个集合中:e=0时,如果i的祖先与j的祖先在同一个集合中,说明 ...
- 【做题笔记】洛谷P1955[NOI2015]程序自动分析
第一道蓝题祭- 注意到本题中判断的是下标,即,并不是真的判断 \(i\) 是否等于 \(j\) 显然考虑并查集,把所有标记为"相等"的数放在一个集合里,然后最后扫一遍每个数,如果有 ...
随机推荐
- laya的skeleton骨骼动画事件响应问题
创建skeleton节点并绑定MOUSE_DOWN事件后,却始终无法响应.经测试发现如下: skeleton节点在load结束后,其bounds反映了总体的宽高,但是width与height却为0,而 ...
- UIScrollView控件介绍
1.UIScrollView控件是什么? (1)移动设备的屏幕⼤大⼩小是极其有限的,因此直接展⽰示在⽤用户眼前的内容也相当有限 (2)当展⽰示的内容较多,超出⼀一个屏幕时,⽤用户可通过滚动⼿手势来查看 ...
- HNOI2008 越狱 (组合数学)
传送门 应该是HNOI2008年最简单的一道题了吧……简单的组合数题,不过要换个思路. 我们直接考虑发生越狱的情况似乎有点复杂,那我们换个思路,考虑不发生越狱的情况,也就是两个有相同宗教的人不会坐在一 ...
- Linux Shell高级技巧(目录)
为了方便我们每个人的学习,这里将给出Linux Shell高级技巧五篇系列博客的目录以供大家在需要时参阅和查找. Linux Shell高级技巧(一) http://www.cnblogs.com/s ...
- linux中使用netstat
1 功能: 显示本机的网络连接.运行端口和路由表的信息. 2 常见选项 -a:显示本机所有连接和监听的端口 -n:网络IP地址的形式显示当前建立的有效连接和端口 -r:显示路由表信息 -s:显示按协议 ...
- EasyUI 表格点击右键添加或刷新 绑定右键菜单
例1 在HTML页面中设置一个隐藏的菜单(前提是已经使用封装的Easyui) 代码: <div id="contextMenu_jygl" class="easyu ...
- sourceTree 的使用
一.拉取其他分支代码 1.git clone 代码是下载master分支 2.在未做修改的情况下,合并分支 二.提交代码到其他分支 1.创建分支(名称可以与远程不同) 2.(正常提交步骤)将作出的修改 ...
- OC静态代码检查实战
此文已由作者杨晓授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 在Mac OS系统上,采用Xcodebuild Analyze命令和OClint工具,对iOS项目进行静态代码 ...
- python 通过setup.py安装和卸载python软件包
安装:sudo python setup.py install 卸载:sudo python setup.py install --record log sudo cat log | sudo xar ...
- poj 2891 Strange Way to Express Integers【扩展中国剩余定理】
扩展中国剩余定理板子 #include<iostream> #include<cstdio> using namespace std; const int N=100005; ...