CIFAR100与VGG13实战
CIFAR100
13 Layers
cafar100_train
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
conv_layers = [
# 5 units of conv + max polling
# unit 1
layers.Conv2D(64,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(64,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit2
layers.Conv2D(128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(128,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit3
layers.Conv2D(256,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(256,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit4
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit5
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.Conv2D(512,
kernel_size=[3, 3],
padding="same",
activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
]
def preprocess(x, y):
# [0-1]
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x, y
(x, y), (x_test, y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.shuffle(1000).map(preprocess).batch(64)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.map(preprocess).batch(64)
def main():
# [b,32,32,3]-->[b,1,1,512]
conv_net = Sequential(conv_layers)
conv_net.build(input_shape=[None, 32, 32, 3])
# x = tf.random.normal([4, 32, 32, 3])
# out = conv_net(x)
# print(out.shape)
fc_net = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(100, activation=None),
])
conv_net.build(input_shape=[None, 32, 32, 3])
fc_net.build(input_shape=[None, 512])
optimizer = optimizers.Adam(lr=1e-4)
# [1,2]+[3,4] = [1,2,3,4]
variables = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(3):
for step, (x, y) in enumerate(train_db):
with tf.GradientTape() as tape:
# [b,32,32,3]
out = conv_net(x)
# flatten ==> [b,512]
out = tf.reshape(out, [-1, 512])
# [b,512] --> [b,100]
logits = fc_net(out)
# [b] --> [b,100]
y_onehot = tf.one_hot(y, depth=100)
# compute loss
loss = tf.losses.categorical_crossentropy(y_onehot,logits,from_logits=True)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss,variables)
optimizer.apply_gradients(zip(grads,variables))
if step % 100 ==0:
print(epoch,step,'loss:',float(loss))
total_num = 0
total_correct = 0
for x,y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
total_correct += int(correct)
acc = total_correct / total_num
print(epoch, 'acc:', acc)
if __name__ == '__main__':
main()
CIFAR100与VGG13实战的更多相关文章
- 基于tensorflow2.0和cifar100的VGG13网络训练
VGG是2014年ILSVRC图像分类竞赛的第二名,相比当年的冠军GoogleNet在可扩展性方面更胜一筹,此外,它也是从图像中提取特征的CNN首选算法,VGG的各种网络模型结构如下: 今天代码的原型 ...
- TensorFlow2教程(目录)
第一篇 基本操作 01 Tensor数据类型 02 创建Tensor 03 Tensor索引和切片 04 维度变换 05 Broadcasting 06 数学运算 07 前向传播(张量)- 实战 第二 ...
- Reading | 《TensorFlow:实战Google深度学习框架》
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使 ...
- SSH实战 · 唯唯乐购项目(上)
前台需求分析 一:用户模块 注册 前台JS校验 使用AJAX完成对用户名(邮箱)的异步校验 后台Struts2校验 验证码 发送激活邮件 将用户信息存入到数据库 激活 点击激活邮件中的链接完成激活 根 ...
- GitHub实战系列汇总篇
基础: 1.GitHub实战系列~1.环境部署+创建第一个文件 2015-12-9 http://www.cnblogs.com/dunitian/p/5034624.html 2.GitHub实战系 ...
- MySQL 系列(四)主从复制、备份恢复方案生产环境实战
第一篇:MySQL 系列(一) 生产标准线上环境安装配置案例及棘手问题解决 第二篇:MySQL 系列(二) 你不知道的数据库操作 第三篇:MySQL 系列(三)你不知道的 视图.触发器.存储过程.函数 ...
- Asp.Net Core 项目实战之权限管理系统(4) 依赖注入、仓储、服务的多项目分层实现
0 Asp.Net Core 项目实战之权限管理系统(0) 无中生有 1 Asp.Net Core 项目实战之权限管理系统(1) 使用AdminLTE搭建前端 2 Asp.Net Core 项目实战之 ...
- 给缺少Python项目实战经验的人
我们在学习过程中最容易犯的一个错误就是:看的多动手的少,特别是对于一些项目的开发学习就更少了! 没有一个完整的项目开发过程,是不会对整个开发流程以及理论知识有牢固的认知的,对于怎样将所学的理论知识应用 ...
- asp.net core 实战之 redis 负载均衡和"高可用"实现
1.概述 分布式系统缓存已经变得不可或缺,本文主要阐述如何实现redis主从复制集群的负载均衡,以及 redis的"高可用"实现, 呵呵双引号的"高可用"并不是 ...
随机推荐
- bzoj 3714: [PA2014]Kuglarz【最小生成树】
参考:https://blog.csdn.net/aarongzk/article/details/48883741 没想到吧.jpg 来自题解: "如果用sum[i]表示前i个杯子底球的总 ...
- bzoj 4817: [Sdoi2017]树点涂色【树链剖分+LCT】
非常妙的一道题. 首先对于操作一"把点x到根节点的路径上所有的点染上一种没有用过的新颜色",长得是不是有点像LCT中的access操作?进而发现,如果把同一颜色的点连起来作为LCT ...
- hibernate 中createQuery与createSQLQuery(转载)
息: java.lang.ClassCastException: [Ljava.lang.Object; cannot be cast to com.miracle.dm.doc.catalog.mo ...
- 转-iOS 动画总结----UIView动画
来自:http://blog.csdn.net/huifeidexin_1/article/details/7597868/ 1.概述 UIKit直接将动画集成到UIView类中,实现简单动画的创建过 ...
- 转 Oracle 12c: Managing Resources
http://www.oracle-class.com/?p=3058 1. Introduction: Oracle database 12c comes with several Resource ...
- Css 基本的规则写法
样式表的写法: css的语法由一些标志构成,就是一个基本的样式表由选择器,属性和属性值构成.Css有标准的写法规则标准的css写法: h1 { Font-family:黑体;} h1:表示选择符Fon ...
- ASP.NET MVC+Bootstrap个人博客之praise.js点赞特效插件(二)
1. 为啥要做这个点赞插件? praise.js是一款小巧的jQuery点赞插件,使用简便,效果美观. 在做个人博客时遇到了文章点赞问题.联想到各大社交网络中的点赞特效:手势放大.红心放大等等, ...
- Android开发学习—— 消息机制
###主线程不能被阻塞* 在Android中,主线程被阻塞会导致应用不能刷新ui界面,不能响应用户操作,用户体验将非常差* 主线程阻塞时间过长,系统会抛出ANR异常* ANR:Application ...
- 移动web开发基础(一)——像素
这篇文章要弄清楚2个问题:一.什么是逻辑像素和物理像素:二.这两者有什么关系. 对于问题一,先抛出两个概念.我们经常使用的px就是逻辑像素,是浏览器使用的抽象单位:物理像素又和dp/pt(设备无关像素 ...
- AJPFX讲解java单例模式
单例设计模式概述: 单例模式就是要确保类在内存中只有一个对象,该实例必须自动创建,并且对外提供单例模式有以下特点: 1.单例类只能有一个实例. 2.单例类必须自己自己创建自己的唯一实例. 3 ...