[BZOJ2190][SDOI2008]仪仗队 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2190
看到这道题首先想到了NOI2010的能量采集,这不就是赤裸裸的弱化版吗?直接上莫比乌斯反演就行了。
令$f(d)=\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)==d]$
则有$g(d)=\sum_{i=1}^n\sum_{j=1}^n[d|gcd(i,j)]=\frac{n}{d}\frac{n}{d}=\sum_{d|n}f(d)$
由莫比乌斯反演得$f(d)=\sum_{d|n}μ(\frac{n}{d})F(n)=\sum_{x=1}^nμ(x)\frac{n}{dx}\frac{n}{dx}$
然而并没有写,因为发现有更简单的做法。
其实我们发现除开对角线单看一半,就是求小于n的x的phi值的和是多少,根据$gcd(a,b)=1$容易观察出来,然后最后加上对角线还有x轴y轴上三个特殊的点就可以了。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int p[],cnt=;
int phi[];
bool vis[];
void sieve(){
for(int i=;i<=;i++){
if(!vis[i]){
p[++cnt]=i;
phi[i]=i-;
}
for(int j=;p[j]*i<=&&j<=cnt;j++){
vis[i*p[j]]=true;
if(i%p[j]==){
phi[i*p[j]]=phi[i]*p[j];
break;
}
phi[i*p[j]]=phi[i]*(p[j]-);
}
}
}
int N;
int main(){
sieve();
scanf("%d",&N);
ll ans=;
for(int i=;i<N;i++) ans+=phi[i];
ans=ans*+;
printf("%lld\n",ans);
return ;
}
[BZOJ2190][SDOI2008]仪仗队 数学的更多相关文章
- P2158/bzoj2190 [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队 欧拉函数 计算下三角的点数再*2+1 观察斜率,自行体会 #include<iostream> #include<cstdio> #in ...
- bzoj2190: [SDOI2008]仪仗队(欧拉)
2190: [SDOI2008]仪仗队 题目:传送门 题解: 跟着企鹅大佬做题! 自己瞎搞搞就OK,不难发现,如果以C作为原点建立平面直角坐标系,那么在这个坐标系中,坐标为(x,y)且GCD(x,y) ...
- P1582 倒水,P2158 [SDOI2008]仪仗队——数学,二进制
有n个瓶子,里面都有一升水,但是只想保留k个瓶子,只能两个瓶子里面的水体积相等时才能倒在一个瓶子里:不能丢弃有水的瓶子:瓶子容量无限: 问需要购买几个额外的瓶子才能满足条件: 因为每个瓶子一开始只有一 ...
- BZOJ2190: [SDOI2008]仪仗队
Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是 ...
- BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...
- bzoj2190 [SDOI2008]仪仗队 - 筛法 - 欧拉函数
作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图). ...
- BZOJ2190 [SDOI2008]仪仗队(欧拉函数)
与HDU2841大同小异. 设左下角的点为(1,1),如果(1,1)->(x,y)和(1,1)->(x',y')向量平行,那只有在前面的能被看见.然后就是求x-1.y-1不互质的数对个数. ...
- 【数论】【欧拉函数】bzoj2190 [SDOI2008]仪仗队
由图可知,一个人无法被看到时,当且仅当有 人与原点 的斜率与他相同,且在他之前. ∴一个人可以被看到,设其斜率为y/x,当且仅当y/x不可再约分,即gcd(x,y)=1. 考虑将图按对角线划分开,两部 ...
- [bzoj2190][SDOI2008]仪仗队 ——欧拉函数
题解 以c点为(0, 0)建立坐标系,可以发现, 当(x,y)!=1,即x,y不互素时,(x,y)点一定会被点(x/n, y/n)遮挡. 所以点(x, y)被看到的充分必要条件是Gcd(x, y) = ...
随机推荐
- grep命令最经常使用的功能总结
1. grep最简单的用法,匹配一个词:grep word filename 2. 能够从多个文件里匹配:grep word filename1 filenam2 filename3 3. 能够使用正 ...
- 调参侠的末日? Auto-Keras 自动搜索深度学习模型的网络架构和超参数
Auto-Keras 是一个开源的自动机器学习库.Auto-Keras 的终极目标是允许所有领域的只需要很少的数据科学或者机器学习背景的专家都可以很容易的使用深度学习.Auto-Keras 提供了一系 ...
- java8--集合(疯狂java讲义3复习笔记)
1.集合分四类:set,map,list,queue 位于java.util包下. 集合类和数组的区别,数组可以保存基本类型的值或者是对象的引用,而集合里只能保存对象的引用. 集合类主要由两个接口派生 ...
- Burnside&Polya
以前只是直接用了这两个式子..今天才仔细看了证明..[网上的真是难懂啊 我看的几个博客地址(各有优缺): 其实如果能懂的话 只看博客B就可以了 首先是一些置换群方面的定义和性质 博客A:http:/ ...
- 《JAVA与模式》之迭代子模式
迭代子模式又叫游标(Cursor)模式,是对象的行为模式.迭代子模式可以顺序地访问一个聚集中的元素而不必暴露聚集的内部表象(internal representation). 聚集和JAVA聚集 多个 ...
- 【196】Dell 移动工作站系统安装方法
会出现找不到硬盘的情况,解决方法:安装系统的时候需要加载阵列卡驱动 下载阵列卡驱动,以 Dell T7610 为例根据安装系统进行选择,地址:http://zh.community.dell.com/ ...
- 关于ArcGis for javascrept查询ArcGis server图层信息的方式
方式一: queryTask方式: 该方式用于单个图层的条件查询(不能跨图层查询) 1. 创建query对象 query = new esri.tasks.Query(); 2. 给query对象设置 ...
- linux下解压tgz文件(转载)
转自:http://www.blogjava.net/chenlb/archive/2008/09/03/226654.html .tgz 解压: tar zxvf myfile.tgz
- bzoj 1912: [Apio2010]patrol 巡逻【不是dp是枚举+堆】
我是智障系列.用了及其麻烦的方法= =其实树形sp就能解决 设直径长度+1为len(环长) 首先k=1,直接连直径两端就好,答案是2*n-len 然后对于k=2,正常人的做法是树形dp:先求直径,然后 ...
- (5)css盒子模型(基础上)
CSS 盒子模型概述 ***什么是CSS的盒子模型呢?为什么叫它是盒子?先说说我们在网页设计中常听的属性名:内容(content).边框(border).内边距(padding).外边距(margin ...