第二个\( O(T\sqrt(n)) \)复杂度T了..T了..T了...天地良心,这能差多少?!

于是跑去现算(。

\[\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}gcd(i,j)
\]

\[\sum_{d=1}^{n}d\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}[gcd(i,j)==d]
\]

\[\sum_{d=1}^{n}d(\sum_{j=1}^{n}\sum_{i=1}^{j}[gcd(i,j)==d]-\sum_{j=1}^{n}[gcd(j,j)==d])
\]

\[\sum_{d=1}^{n}d(\sum_{j=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\sum_{i=1}^{j}[gcd(i,j)==1]-1)
\]

\[\sum_{d=1}^{n}d(\sum_{j=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\phi(j)-1)
\]

然后与\( O(nlnn) \)处理出所有答案。

#include<iostream>
#include<cstdio>
using namespace std;
const int N=5000005,m=5000000;
int T,n,phi[N],q[N],tot;
long long s[N],ans[N],con;
bool v[N];
int main()
{
phi[1]=1;
for(int i=2;i<=m;i++)
{
if(!v[i])
{
q[++tot]=i;
phi[i]=i-1;
}
for(int j=1;j<=tot&&i*q[j]<=m;j++)
{
int k=i*q[j];
v[k]=1;
if(i%q[j]==0)
{
phi[k]=phi[i]*q[j];
break;
}
phi[k]=phi[i]*(q[j]-1);
}
}
for(int i=1;i<=m;i++)
for(int j=2;j<=m/i;j++)
ans[i*j]+=phi[j]*i;
for(int i=1;i<=m;i++)
ans[i]+=ans[i-1];
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
printf("%lld\n",ans[n]);
}
return 0;
}

51nod 1188 最大公约数之和 V2的更多相关文章

  1. 51nod - 1188 - 最大公约数之和 V2 - 数论

    https://www.51nod.com/Challenge/Problem.html#!#problemId=1188 求\(\sum\limits_{i=1}^{n-1}\sum\limits_ ...

  2. 51 nod 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...

  3. 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB  给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和.       相当于计算这段程 ...

  4. 51nod1188 最大公约数之和 V2

    考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi( ...

  5. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  6. 51nod 1237 最大公约数之和 V3(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...

  7. 51nod 1040 最大公约数之和 欧拉函数

    1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...

  8. 51NOD 1237 最大公约数之和 V3 [杜教筛]

    1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...

  9. 51nod 1040 最大公约数之和

    给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15   Input 1个数N(N <= ...

随机推荐

  1. POJ 3254 【状态压缩DP】

    题意: 给一块n*m的田地,1代表肥沃,0代表贫瘠. 现在要求在肥沃的土地上种草,要求任何两个草都不能相邻. 问一共有多少种种草的方法. 种0棵草也是其中的一种方法. n和m都不大于12. 思路: 状 ...

  2. curl 中文乱码

    curl 中文乱码 学习了:https://blog.csdn.net/thc1987/article/details/52583789 学习了: http://blog.itpub.net/2903 ...

  3. antd 表单验证

    antd  form 自带方法 /** * 获取 form 自带方法 * getFieldDecorator * getFieldsError * getFieldError * isFieldTou ...

  4. 有两个字符串a,b。假设a="ab",b="cd",判断字符串c="acbd"是属于a、b的组合。满足组合后a、b的内部顺序均不变。

    #include<iostream> #include<string> using namespace std; int check(string a,string b,str ...

  5. Tcl学习之--列表|字典

    [列表|字典] Tcl使用列表来处理各种集合,比方一个目录中的全部文件,以及一个组件的全部选项.最简单的列表就是包括由随意个空格.制表符.换行符.分隔的随意多个元素的字符串.比方: JerryAlic ...

  6. 分享一个基于Bootstrap的 ACE框架 入门(MVC+EF)

    基于Bootstrap3,拥有强大的功能组件以及UI组件,基本能满足后台管理系统的需求, 而且能根据不同设备适配显示,而且还有四个主题可以切换. 简单入门,源代码下载:https://github.c ...

  7. 初步认识Tensorflow

    不多说,直接上干货! TensorFlow 是一个开源软件库,用于使用数据流图进行数值计算.换句话说,即是构建深度学习模型的最佳方式. Tensorflow的官网 https://www.tensor ...

  8. 图像配准建立仿射变换模型并用RANSAC算法评估

    当初选方向时就由于从小几何就不好.缺乏空间想像能力才没有选择摄影測量方向而是选择了GIS. 昨天同学找我帮他做图像匹配.这我哪里懂啊,无奈我是一个别人有求于我,总是不好意思开口拒绝的人.于是乎就看着他 ...

  9. 嵌入式开发之davinci--- 8148 小站信息

    http://zhan.renren.com/tag?value=dm8148#!//more/3602888498051423017 http://zhan.renren.com/dm8148evm ...

  10. HDU 4277 USACO ORZ(暴力+双向枚举)

    USACO ORZ Time Limit: 5000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...