bzoj 2839: 集合计数【容斥原理+组合数学】
首先,考虑容斥,我们所要的答案是并集至少有\( k \)个数的方案数减去并集至少有\( k+1 \)个数的方案数加上并集至少有\( k \)个数的方案数……
在n个数中选i个的方案数是\( C_{n}^{i} \),n种集合的组合方案数为\( 2^n \)
并集至少有i个元素的方案数即为选\( i \)个元素的方案数\( C_{n}^{i} \),乘上剩下\( n-i \)个元素任意组合的方案数\( 2{2{n-i}-1} \)
然后乘上容斥系数\( (-1)^{i-k} \),再乘上在并集的\( i \)个元素中选择\( k \)个元素的方案数\( C_{i}^{k} \)
答案即为:\( ans=\sum_{i=k}{i<=n}(-1){i-k}*C_{n}{i}*C_{i}{k}*2{2{n-i}-1} \),ans可能为负数,记得最后\( ans=(ans\%mod+mod)\%mod \)
#include<iostream>
#include<cstdio>
using namespace std;
const long long mod=1e9+7,N=1000005;
long long n,k,inv[N],fac[N],ans;
long long ksm(long long a,long long b)
{
long long r=1ll;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
long long C(long long n,long long m)
{
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
scanf("%lld%lld",&n,&k);
fac[0]=1;
for(long long i=1;i<=n;i++)
fac[i]=fac[i-1]*i%mod;//,cout<<fac[i]<<" ";
inv[n]=ksm(fac[n],mod-2);
for(long long i=n-1;i>=0;i--)
inv[i]=inv[i+1]*(i+1)%mod;//,cout<<inv[i]<<endl;;
for(long long i=n,b=2;i>=k;i--,b=b*b%mod)
ans=(ans+((((i-k)&1)?-1:1)*C(n,i)%mod*C(i,k)%mod*(b+mod-1)%mod))%mod;
printf("%lld",(ans%mod+mod)%mod);
return 0;
}
bzoj 2839: 集合计数【容斥原理+组合数学】的更多相关文章
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- bzoj 2839 : 集合计数 容斥原理
因为要在n个里面选k个,所以我们先枚举选的是哪$k$个,方案数为$C_{n}^k$ 确定选哪k个之后就需要算出集合交集正为好这$k$个的方案数,考虑用容斥原理. 我们还剩下$n-k$个元素,交集至少为 ...
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- Bzoj 2839 集合计数 题解
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 495 Solved: 271[Submit][Status][Discuss] ...
- ●BZOJ 2839 集合计数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2839 题解: 容斥原理 真的是神题!!! 定义 f[k] 表示交集大小至少为 k时的方案数怎 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- [BZOJ 2839]集合计数
Description 题库链接 有 \(2^n\) 个集合,每个集合只包含 \([1,n]\) ,且这些集合两两不同.问有多少种选择方法(至少选一个),使得这些集合交集大小为 \(k\) . \(0 ...
- bzoj 2839 集合计数——二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( g(i) \) 表示至少有 i 个, \( f(i) \) 表示恰好有 i ...
- bzoj 2839 集合计数 —— 二项式反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2839 设 \( f(i) \) 为至少 \( i \) 个选择,则 \( f(i) = C_ ...
随机推荐
- how to read openstack code: action extension
之前我们看过了core plugin, service plugin 还有resource extension. resource extension的作用是定义新的资源.而我们说过还有两种exten ...
- Maven创建项目时出现Generating project in Interactive mode就一直卡住的解决方案
使用maven命令在创建项目的时候出现 Generating project in Interactive mode 然后就一直卡住 网上搜做了很多解决方案 有说各种方案的,最后找到了一种.实验成功 ...
- Excel小tips - 如何实现多列成绩统一排名
本文参考:http://mp.weixin.qq.com/s/XR49hyG9Cods7rOcsM-tRg 如果有以下数据文件,需要进行成绩排名. 第一步:先在成绩列后边添加一列,用来显示名次.如下: ...
- C++:vector中的resize()函数 VS reserve()函数
http://www.cnblogs.com/biyeymyhjob/archive/2013/05/11/3072893.html
- libevent编程疑难解答
http://blog.csdn.net/luotuo44/article/details/39547391 转载请注明出处:http://blog.csdn.net/luotuo44/article ...
- Ubuntu使用adb连接android手机失败unknown的解决的方法
Ubuntu使用adb连接android手机失败unknown的解决的方法 Ubuntu下通过USB数据线连接G11手机后,adb可能无法识别到设备.依照一下步骤能够解决此问题. 1.在termi ...
- 《鸟哥的Linux私房菜-基础学习篇(第三版)》(六)
第5章 首次登陆与在线求助man page 1. 首次登陆系统 首先谈了首次登陆CentOS 5.x界面.登陆选项中的会话是能够使用不同的图形界面来操作整个Linux系统. ...
- 初探swift语言的学习笔记十一(performSelector)
作者:fengsh998 原文地址:http://blog.csdn.net/fengsh998/article/details/35842441 转载请注明出处 假设认为文章对你有所帮助,请通过留言 ...
- 嵌入式开发之davinci--- 8168 电源调试总结
http://www.61ic.com/Article/DaVinci/TMS320DM81x/201403/51863.html
- Linux下使用inotify实现对文件的监控
项目中,要实现用户通过网页设置參数,后台接收数据然后写串口. 网页写数据到本地文件,使用inotify监控文件的IN_MODIFY事件.当文件被改动,然后触发写串口事件. 第一个程序只把要监控的文件增 ...