bzoj 3751: [NOIP2014]解方程【数学】
……我真是太非了,自己搞了7个质数都WA,从别人那粘5个质数就A了……
就是直接枚举解,用裴蜀定理计算是否符合要求,因为这里显然结果很大,所以我们对多个质数取模看最后是不是都为0
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1000005,p[]={11261,19997,22877,21893,14843};
long long n,m,a[110][10],cnt[N];
bool f[N][10];
char s[N];
bool clc(int v,int j)
{
long long r=0;
for(int i=n;i>=0;--i)
r=(r*v+a[i][j])%p[j];
return r!=0;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<=n;++i)
{
scanf("%s",s);
int len=strlen(s),fl=1;
for(int l=0;l<len;++l)
{
if(s[l]=='-')
fl=-1;
else
for(int j=0;j<5;++j)
a[i][j]=(a[i][j]*10+s[l]-'0')%p[j];
}
if(fl==-1)
for(int j=0;j<5;++j)
a[i][j]=p[j]-a[i][j];
}
for(int j=0;j<5;++j)
for(int i=0;i<p[j];++i)
f[i][j]=clc(i,j);
for(int i=1;i<=m;++i)
{
bool fl=1;
for(int j=0;j<5;++j)
if(f[i%p[j]][j])
{
fl=0;
break;
}
if(fl)
cnt[++cnt[0]]=i;
}
printf("%d\n",cnt[0]);
for(int i=1;i<=cnt[0];++i)
printf("%d\n",cnt[i]);
return 0;
}
bzoj 3751: [NOIP2014]解方程【数学】的更多相关文章
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- bzoj 3751: [NOIP2014]解方程
Description 已知多项式方程: a0+a1x+a2x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 解题报告: 这题比较诡,看到高精度做不了,就要想到 ...
- 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4856 Solved: 983[Submit][Status ...
- 【BZOJ】3751: [NOIP2014]解方程
题意 求\(\sum_{i=0}^{n} a_i x^i = 0\)在\([1, m]\)内的整数解.(\(0 < n \le 100, |a_i| \le 10^{10000}, a_n \n ...
- [BZOJ3751] [NOIP2014] 解方程 (数学)
Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...
- [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
- LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...
- [NOIP2014]解方程
3732 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 输入描述 Input Descrip ...
随机推荐
- 免费第三方API平台整合
各大平台免费接口,非常适用 http://developer.51cto.com/art/201412/458778.htm 绝对干货:供个人开发者赚钱免费使用的一些好的API接口http://www ...
- 实验二:编写输出“Hello word!”
一:编写输出“Hello word!” 1.运行eclipse,在project name中输入要创建的项目名称. 2.创建java类,点击File->New->Class,在弹出窗口中N ...
- freeswitch对媒体的处理的三种方式
一.默认方式:媒体通过freeswitch, RTP被freeswtich转发, freeswitch控制编码的协商并在协商不一致时提供语音编码转换能力, 支持录音,二次拨号等. 二.代理模式: ...
- 信号量学习 & 共享内存同步
刚刚这篇文章学习了共享内存:http://www.cnblogs.com/charlesblc/p/6142139.html 里面也提到了共享内存,自己不进行同步,需要其他手段比如信号量来进行.那么现 ...
- 2003-07-16T01:24:32Z这是什么时间格式
这是标准的XML Schema的"日期型数据格式”. T是代表后面跟着“时间”.Z代表0时区,或者叫UTC统一时间. 世界的每个地区都有自己的本地时间,在Internet及无线电通信时,时间 ...
- react-redux 之 provider 和 connect
1.Provider 提供的是一个顶层容器的作用,实现store的上下文传递 2.connect 可以把state和dispatch绑定到react组件,使得组件可以访问到redux的数据 react ...
- Codeforces Round #135 (Div. 2)---A. k-String
k-String time limit per test 2 seconds memory limit per test 256 megabytes input standard input outp ...
- 使用vscode 编译 sass
由于我在工作中用的编辑器是 vscode ,所以记录一下vscode 编译sass 的配置 vs code 编译saass 1.在扩展里搜索“easy sass”,直接进行安装即可 2.安装后默认已经 ...
- 【iOS系列】- UITableView的使用技巧
[iOS系列]- UITableView的使用 UITableView的常用属性 indexpath.row:行 indexpath.section:组 separatorColor:分割线的颜色 s ...
- yummain.py install yum 不能运行的原因 yummain.py not found
[root@akinlau ~] wget http://tel.mirrors.163.com/centos/6/os/x86_64/Packages/python-urlgrabber-3.9.1 ...