……我真是太非了,自己搞了7个质数都WA,从别人那粘5个质数就A了……

就是直接枚举解,用裴蜀定理计算是否符合要求,因为这里显然结果很大,所以我们对多个质数取模看最后是不是都为0

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1000005,p[]={11261,19997,22877,21893,14843};
long long n,m,a[110][10],cnt[N];
bool f[N][10];
char s[N];
bool clc(int v,int j)
{
long long r=0;
for(int i=n;i>=0;--i)
r=(r*v+a[i][j])%p[j];
return r!=0;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<=n;++i)
{
scanf("%s",s);
int len=strlen(s),fl=1;
for(int l=0;l<len;++l)
{
if(s[l]=='-')
fl=-1;
else
for(int j=0;j<5;++j)
a[i][j]=(a[i][j]*10+s[l]-'0')%p[j];
}
if(fl==-1)
for(int j=0;j<5;++j)
a[i][j]=p[j]-a[i][j];
}
for(int j=0;j<5;++j)
for(int i=0;i<p[j];++i)
f[i][j]=clc(i,j);
for(int i=1;i<=m;++i)
{
bool fl=1;
for(int j=0;j<5;++j)
if(f[i%p[j]][j])
{
fl=0;
break;
}
if(fl)
cnt[++cnt[0]]=i;
}
printf("%d\n",cnt[0]);
for(int i=1;i<=cnt[0];++i)
printf("%d\n",cnt[i]);
return 0;
}

bzoj 3751: [NOIP2014]解方程【数学】的更多相关文章

  1. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  2. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  3. bzoj 3751: [NOIP2014]解方程

    Description 已知多项式方程: a0+a1x+a2x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 解题报告: 这题比较诡,看到高精度做不了,就要想到 ...

  4. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  5. 【BZOJ】3751: [NOIP2014]解方程

    题意 求\(\sum_{i=0}^{n} a_i x^i = 0\)在\([1, m]\)内的整数解.(\(0 < n \le 100, |a_i| \le 10^{10000}, a_n \n ...

  6. [BZOJ3751] [NOIP2014] 解方程 (数学)

    Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...

  7. [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  8. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  9. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

随机推荐

  1. HDU3430 (置换群循环节+中国剩余定理)

    题意:给出n张牌,标号为1-n,然后给出两个序列,序列1表示序列1,2,3,4……,n洗一次牌后到达的,序列2表示目标序列,问初始序列按序列1的洗牌方式洗几次能到达序列2的情况,如果不能到达输出-1. ...

  2. java开发面试大全刷题整理

    题目源自Java团长公众号,内容个人整理,来源于各大博客,未经允许,不准摘抄,仅供分享,不做商业使用. 本分享多数为浅层知识体系,更为底层的还请自行多写写代码,若有不对之处,望广大的人才指点,不喜勿喷 ...

  3. DLL混淆

  4. Navicat for MySQL无法连接到数据库怎么办

    注意端口就是3306,不要改成80之类的,访问数据库就是从这个端口过去的

  5. 无限级分类Asp.net Mvc实现

    无限级分类Asp.net Mvc实现   无限级分类涉及到异步加载子类.加载当前类和匹配问题,现在做一个通用的实现.   (一) 效果如下:   (二)设计.实现及使用 (1)数据库 (a)表设计db ...

  6. ASP.NET MVC 学习笔记-2.Razor语法 ASP.NET MVC 学习笔记-1.ASP.NET MVC 基础 反射的具体应用 策略模式的具体应用 责任链模式的具体应用 ServiceStack.Redis订阅发布服务的调用 C#读取XML文件的基类实现

    ASP.NET MVC 学习笔记-2.Razor语法   1.         表达式 表达式必须跟在“@”符号之后, 2.         代码块 代码块必须位于“@{}”中,并且每行代码必须以“: ...

  7. Saltstack运行cmd.run重新启动tomcat后出现日志乱码(15)

    Saltstack使用的cmd.run调用的是核心模块cmdmod.py,以下我们来看一下cmdmod.py模块的源代码: cat /usr/lib/python2.6/site-packages/s ...

  8. Matlab遗传算法优化问题求解的演示样例代码

    代码例如以下: function m_main() clear clc Max_gen = 100;% 执行代数 pop_size = 100;%种群大小 chromsome = 10;%染色体的长度 ...

  9. 2016/05/16 thinkphp3.2.2 验证码使用

    Think\Verify类可以支持验证码的生成和验证功能. 生成验证码 下面是最简单的方式生成验证码: $Verify =new \Think\Verify(); $Verify->entry( ...

  10. 2016/3/21 面向对象: ①定义类 ②实例化对象 ③$this关键字 ④构造函数 ⑤析构函数 ⑥封装 ⑦继承

    一:定义类   二:实例化对象 //定义类 class Ren { var $name; var $sex; var $age; function Say() { echo "{$this- ...