noip2002矩阵覆盖(搜索)
矩阵覆盖
题目描述
在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。
这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。
输入输出格式
输入格式:
n k xl y1 x2 y2 ... ...
xn yn (0<=xi,yi<=500)
输出格式:
输出至屏幕。格式为:
一个整数,即满足条件的最小的矩形面积之和。
输入输出样例
4 2
1 1
2 2
3 6
0 7
/*
初始时,所有矩形的左下点坐标(+∞,+∞),右上角坐标(-∞,-∞)
然后按输入顺序,一个点一个点挨个搜
判断被搜的那个点是否被所有矩形覆盖了,如果有矩形没有覆盖这个点,
该矩形以最优解形式覆盖这个点(即这个点在矩形的边上),
每搜一个点后,就判断当前状态下,所有矩形是否没有覆盖,把不合法的废枝丢掉,提高效率
*/
#include <stdio.h>
#include <stdlib.h>
#define MAXN 100
#define INF 0x3f3f3f3f
int ans=INF,n,k;
struct point
{
int x;//该点的x坐标
int y;//该点的y坐标
}dots[MAXN];
struct square
{
struct point l; //左下角的点l
struct point r; //右上角的点r
}sqr[];
int checkit(int i,int j) //检查第i、j个矩形之间是否有冲突(即两个矩形有重叠区域)
{
if(sqr[i].l.x==INF||sqr[i].l.y==INF||sqr[i].r.x==-INF||sqr[i].r.y==-INF)
return ;
if(sqr[j].l.x==INF||sqr[j].l.y==INF||sqr[j].r.x==-INF||sqr[j].r.y==-INF)
return ;
if(sqr[i].l.x>sqr[j].r.x||sqr[i].l.y>sqr[j].r.y)
return ;
if(sqr[j].l.x>sqr[i].r.x||sqr[j].l.y>sqr[i].r.y)
return ;
return ;
}
int check() //检查当前所有已知矩形是否都合法。合法返回1
{
int i,j;
for(i=;i<k;i++)
{
for(j=i+;j<k;j++)
if(checkit(i,j))
return ;
}
return ;
}
int getsqr() //函数获取当前所有矩形覆盖面积之和
{
int i,ans=;
for(i=;i<k;i++)
{
if(sqr[i].l.x!=INF)
ans+=(sqr[i].r.x-sqr[i].l.x)*(sqr[i].r.y-sqr[i].l.y);
}
return ans;
}
void srch(int now) //寻找第now个点时矩形是否能覆盖
{
if(now==n) //搜索完成
{
ans=getsqr(); //获取当前所有矩形覆盖面积
return;
}
int i,j;
for(i=;i<k;i++) //从第0个矩形循环搜索到第k-1个矩形,判断矩形是否覆盖了点now
{
struct square tmp=sqr[i];
if(sqr[i].l.x>dots[now].x)
sqr[i].l.x=dots[now].x;
if(sqr[i].l.y>dots[now].y)
sqr[i].l.y=dots[now].y;
if(sqr[i].r.x<dots[now].x)
sqr[i].r.x=dots[now].x;
if(sqr[i].r.y<dots[now].y)
sqr[i].r.y=dots[now].y;
if(check()&&getsqr()<ans) //如果该步完成后,之前所有矩形都是合法的,且当前所有已求出的矩形面积比当前最优解小,则向深层(下一个点)搜索
srch(now+);
sqr[i]=tmp;
}
}
int main()
{
int i,j;
scanf("%d%d",&n,&k);
for(i=;i<n;i++)
scanf("%d%d",&dots[i].x,&dots[i].y);
for(i=;i<k;i++)
{
sqr[i].l.x=INF;
sqr[i].l.y=INF;
sqr[i].r.x=-INF;
sqr[i].r.y=-INF;
}
srch();
printf("%d",ans);
return ;
}
心若向阳,无谓悲伤
noip2002矩阵覆盖(搜索)的更多相关文章
- [LuoguP1034][Noip2002] 矩形覆盖
[LuoguP1034][Noip2002] 矩形覆盖(Link) 在平面上有\(N\)个点,\(N\)不超过五十, 要求将这\(N\)个点用\(K\)个矩形覆盖,\(k\)不超过\(4\),要求最小 ...
- 【BZOJ2003】[HNOI2010]矩阵(搜索)
[BZOJ2003][HNOI2010]矩阵(搜索) 题面 懒得粘了,不难找吧. 题解 看的学长写的题解,也懒得写了 大概是这样的. 不难发现只需要确定第一行和第一列就能确定答案,而确定第一行之后每确 ...
- 【校招面试 之 剑指offer】第10-3题 矩阵覆盖问题
题目:我们可以使用2✖️1的小矩形横着或者竖着去覆盖更大的矩形.请问用8个2✖️1的小矩形无重叠地覆盖一个2✖️8的大矩形,共有多少种方法? 分析:当放第一块时(假定从左边开始)可以横着放,也可以竖着 ...
- c++刷题(21/100)树的打印、矩阵覆盖和括号生成
题目一:把二叉树打印成多行 从上到下按层打印二叉树,同一层结点从左至右输出.每一层输出一行. 思路:一开始以为2维的vector可以直接访问,但是试了是不行,会报错,vector在有值之前不能直接访问 ...
- LeetCode第[79]题(Java):Word Search(矩阵单词搜索)
题目:矩阵单词搜索 难度:Medium 题目内容: Given a 2D board and a word, find if the word exists in the grid. The word ...
- 【剑指offer】10矩阵覆盖
原创博文,转载请注明出处! 0.简介 # 本文是牛客网<剑指offer>刷题笔记,笔记索引链接 1.题目 # 用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地 ...
- 【剑指Offer】矩阵覆盖 解题报告(Python)
[剑指Offer]矩阵覆盖 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://www.nowcoder.com/ta/coding-interviews 题目描 ...
- NOIP2002 矩形覆盖
题四 矩形覆盖(存盘名NOIPG4) [问题描述]: 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2), ...
- Hdu 1564 1*2矩阵覆盖棋局博弈
n*n的矩阵如果n为偶数 则可被1*2的矩形完全覆盖 如果n为奇数 则除起点外 其他各自可被1*2矩形完全覆盖 所以当n为偶数 先手赢 n为奇数 后手赢 #include<bits/stdc++ ...
随机推荐
- 7-16 一元多项式求导(20 分)(有关while(scanf("%d",&n)!=EOF))
7-16 一元多项式求导(20 分) 设计函数求一元多项式的导数. 输入格式: 以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数).数字间以空格分隔. 输出格式: 以与输入相同 ...
- Ubuntu 12.04 之 虚拟主机的配置
Ubuntu 12.04 之 虚拟主机的配置 (1)打开etc/hosts文件 增加: 127.0.0.1 study.ubuntu.com 127.0.0.1 hello.ubuntu.com 12 ...
- Pagodas 等差数列
nn pagodas were standing erect in Hong Jue Si between the Niushou Mountain and the Yuntai Mountain, ...
- 常用的delphi 第三方控件
Devexpress VCL 这个基本上覆盖了系统界面及数据库展示的方方面面,是做桌面系统必备的一套控件,目前的版本是2011.2.3, 支持win32 及win64. AutoUpgrader 这个 ...
- HDU——1498 50 years, 50 colors
50 years, 50 colors Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 模拟用户点击弹出新页面不会被浏览器拦截_javascript技巧
原文:http://www.html5cn.com.cn/article/zxzx/3195.html 相信用过window.open的小伙伴们都遇到过被浏览器拦截导致页面无法弹出的情况:我们换下思路 ...
- iphone的ibooks如何导入pdf?
使用QQ把pdf文档从电脑上发到手机上,使用手机的QQ打开文档,在手机QQ上,用其他应用打开文档,选择‘拷贝’到ibooks
- linux程序命令行选项的3种风格:unix、gnu、x toolkit
In Unix-like systems, the ASCII hyphen-minus is commonly used to specify options. The character is u ...
- fuse-dfs挂载hdfs实录
部署安装了最新稳定版hadoop2.2.0.然后在网上找来fuse-dfs编译教程.可是最后失败了.至今原因未知--,错误描写叙述为:Transport endpoint is not connect ...
- 003 rip
r0#config t Enter configuration commands, one per line. End with CNTL/Z. r0(config)#router rip r0(c ...