传送门

区间dp,记\(dp(l,r,t)\)表示区间\((l,r)\),\(t\)表示这个区间中能不能放\(M\)。如果可以,枚举中间哪里放\(M\)来压缩。也可以不压缩,后面直接跟上去。如果左右重复的,尝试压缩一下,那么循环节里是不能放的

//minamoto
#include<bits/stdc++.h>
using namespace std;
const int N=55,inf=0x3f3f3f3f;
char s[N];int f[N][N][2],n;
bool same(int L,int R){
if((R-L+1)&1)return false;int M=(R-L+1)>>1;
for(int i=L;i<L+M;++i)if(s[i]!=s[i+M])return false;return true;
}
int solve(int L,int R,bool is){
if(L==R)return 1;if(f[L][R][is])return f[L][R][is];int res=inf;
if(is)for(int i=L;i<R;++i)res=min(res,1+solve(L,i,1)+solve(i+1,R,1));
for(int i=L;i<R;++i)res=min(res,solve(L,i,is)+R-i);
if(same(L,R))res=min(res,solve(L,(L+R)>>1,0)+1);return f[L][R][is]=res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%s",s+1);n=strlen(s+1);
printf("%d\n",solve(1,n,1));return 0;
}

P2470 [SCOI2007]压缩的更多相关文章

  1. luogu P2470 [SCOI2007]压缩

    传送门 dalao们怎么状态都设的两维以上啊?qwq 完全可以一维状态的说 设\(f[i]\)为前缀i的答案,转移就枚举从前面哪里转移过来\(f[i]=min(f[j-1]+w(j,i))(j\in ...

  2. 洛谷P2470 [SCOI2007]压缩(区间dp)

    题意 题目链接 Sol 神仙题Orz 考虑区间dp,如果我们只设\(f[l][r]\)表示\(s_{lr}\)被压缩的最小长度,而不去关心内部\(M\)分布的话,可能在转移的时候转移出非法状态 因此考 ...

  3. BZOJ1068: [SCOI2007]压缩

    ... 1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 909  Solved: 566[Submit][Statu ...

  4. bzoj 1068: [SCOI2007]压缩 DP

    1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 496  Solved: 315[Submit][Status] D ...

  5. bzoj 1068 [SCOI2007]压缩 区间dp

    [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1644  Solved: 1042[Submit][Status][Discu ...

  6. [SCOI2007]压缩(动态规划,区间dp,字符串哈希)

    [SCOI2007]压缩 状态:设\(dp[i][j]\)表示前i个字符,最后一个\(M\)放置在\(j\)位置之后的最短字串长度. 转移有三类,用刷表法来实现. 第一种是直接往压缩串后面填字符,这样 ...

  7. 【洛谷P2470】[SCOI2007]压缩

    压缩 #include<iostream> #include<cstring> #include<cstdio> using namespace std; #def ...

  8. 洛谷P2470||bzoj1068 [SCOI2007]压缩

    bzoj1068 洛谷P2470 区间dp入门题?只要注意到每个M“管辖”的区间互不相交即可 错误记录:有点小坑,比如aaaacaaaac最优解为aRRcR(意会坑在哪里),踩了一次 #include ...

  9. BZOJ 1068: [SCOI2007]压缩

    Sol 区间DP.这个区间DP需要三维, \(f[i][j][k]\) 表示\([i,j]\) 这个区间中是否存在 \(M\) . 转移有两种,一种是这个区间存在 \(M\) ,那么直接枚举 \(M\ ...

随机推荐

  1. 关于Django中,实现序列化的几种不同方法

    前言 关于序列化操作,就是将一个可迭代的数据结构,通过便利的方式进行我们所需要的操作. 今天历来归纳一下,Django中的几种不同得分方法,已经Django-restframework提供的方法 创建 ...

  2. fmt:formatDate的输出格式详解

    <fmt:formatDate value="${isoDate}" type="both"/> 2004-5-31 23:59:59 <fm ...

  3. Help Jimmy DP

    Help Jimmy" 是在下图所示的场景上完成的游戏. 场景中包括多个长度和高度各不相同的平台.地面是最低的平台,高度为零,长度无限. Jimmy老鼠在时刻0从高于所有平台的某处开始下落, ...

  4. JDBC的异常

    以下内容引用自http://wiki.jikexueyuan.com/project/jdbc/exceptions.html: 异常处理可以允许处理一个异常情况,例如可控方式的程序定义错误. 当异常 ...

  5. java读取大文本文件

    原文:http://blog.csdn.net/k21325/article/details/53886160 小文件当然可以直接读取所有,然后放到内存中,但是当文件很大的时候,这个方法就行不通了,内 ...

  6. win7如何更改语言教程

    一.首先从桌面左下角的开始菜单中找到“控制面板”,然后打开,如下图所示: 打开电脑控制面板 二.进入控制面板之后,我们再进入“时钟.语言和区域”设置,如下图所示: 电脑语言改成英文方法 三.进入电脑语 ...

  7. Oracle442个应用场景---------PL/SQL基础

    ----------------------------------------------------------------------------------- 备份和恢复数据库略过.在后面解说 ...

  8. B. Error Correct System (CF Round #296 (Div. 2))

    B. Error Correct System time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. Android在onCreate()方法中动态获取TextView控件的高度

    正好朋友项目里遇到了给写了个小Demo: 这个监听器看名字也知道了.就是在绘画完毕之前调用的,在这里面能够获取到行数.当然也能够获取到宽高等信息 package com.example.textvie ...

  10. C++获取时间的方法

    //方案- 长处:仅使用C标准库:缺点:仅仅能精确到秒级 #include <time.h>  #include <stdio.h>  int main( void )  {  ...