【2018.10.15】WZJ笔记(数论)
1. 证明:对于任意质数$p\gt 3$,$p^2-1$能被$24$整除。
证:平方差公式,$p^2-1 = (p-1)(p+1)$。
再把$24$分解质因数$2^3*3$。
三个相邻的自然数中至少有一个数是$3$的倍数,而$p$是质数不可能有因子$3$,所以$p-1,p+1$中必有一个数有因子$3$。
$p$是质数,所以一定是奇数,那$p-1,p+1$就是偶数,而相邻两个偶数中至少有一个是$4$的倍数,所以两个数至少有一个有$1$个因子$2$,另一个有$2$个因子$2$。
所以$(p-1)(p+1)$是$2^3*3=24$的倍数,得证。
2. 把$gcd$卡成$log$级别的。
使用斐波那契数列,$gcd(fib(n),fib(n-1))=gcd(fib(n-1),fib(n)\mod fib(n-1))=gcd(fib(n-1),fib(n-2))$。
事实上有一个预处理$O(n)$,查询$O(1)$的求gcd做法,WZJ下次课讲。
3. 对于任意正整数$n$与质数$p\mod 4=3$,有$p$不整除$n^2+1$。
反证法,假设能整除。
$n^2\equiv -1 (\mod p)$
$(n^2)^\frac{p-1}{2} \equiv (-1)^\frac{p-1}{2} (\mod p)$
结合题意可知$\frac{p-1}{2}$是奇数。所以$n^{p-1}\equiv -1 (\mod p)$
而我们想到费马小定理的$n^{p-1}\equiv -1 (\mod p)$。
但为什么可以转化成费马小定理呢?$p$是质数,但$n,p$一定互质么?
首先$p$是质数,所以一定不是$n$的倍数;其次,如果$n$是$p$的倍数,$n^2+1$一定不是$p$的倍数,就直接证明原题不能整除了(原因:两个相邻的正整数互质)。
所以$n,p$互质,可以套用费马小定理。
结合两者可得$1\equiv -1 (\mod p)$。
$p$不能是2,所以不存在满足的情况。
综上,不能整除。
4. 原题hdu4497。
【2018.10.15】WZJ笔记(数论)的更多相关文章
- 2018.10.15 NOIP训练 hyc的等比数列(数论+枚举)
传送门 一道不错的枚举题. 显然桶排序之后瞎枚举一波. 考虑枚举首项和末项,假设首项除去一个最大的平方因子得到的结果为xxx. 那么末项一定等于xxx乘上一个平方数. 于是我们枚举首项,算出xxx然后 ...
- 【2018.10.15】noip模拟赛Day1
题面 wzj的题解 T1 随便搜 #include<bits/stdc++.h> #define ll long long using namespace std; inline int ...
- 梦想CAD控件 2018.10.15更新
下载地址: http://www.mxdraw.com/ndetail_10105.html 1. 完善com接口的ToCurves函数,转换CAD文字,多行文字到曲线 2. 修改DrawImage接 ...
- 2018.10.15 bzoj3564: [SHOI2014]信号增幅仪(坐标处理+最小圆覆盖)
传送门 省选考最小圆覆盖? 亦可赛艇(你们什么都没看见) 在大佬的引领下成功做了出来. 就是旋转坐标使椭圆的横轴跟xxx轴平行. 然后压缩横坐标使得其变成一个圆. 然后跑最小覆盖圆就可以了. 注意题目 ...
- 2018.10.15 bzoj4570: [Scoi2016]妖怪(凸包)
传送门 不得不说这题有点东西啊. 看到题第一眼二分,用二次函数求范围来进行checkcheckcheck,20分滚粗了233. 于是开始思考正解. 发现可以把每只怪物的二元组属性看成二维坐标. 这时对 ...
- 2018.10.15 bzoj4445: [Scoi2015]小凸想跑步(半平面交)
传送门 话说去年的省选计算几何难度跟前几年比起来根本不能做啊(虽然去年考的时候并没有学过计算几何) 这题就是推个式子然后上半平面交就做完了. 什么? 怎么推式子? 先把题目的概率转换成求出可行区域. ...
- 2018.10.15 loj#6010. 「网络流 24 题」数字梯形(费用流)
传送门 费用流经典题. 按照题目要求建边. 为了方便我将所有格子拆点,三种情况下容量分别为111,infinfinf,infinfinf,费用都为validi,jval_{id_{i,j}}valid ...
- 2018.10.15 loj#6013. 「网络流 24 题」负载平衡(费用流)
传送门 费用流sb题. 直接从sss向每个点连边,容量为现有物品量. 然后从ttt向每个点连边,容量为最后库存量. 由于两个点之间可以互相任意运送物品,因此相邻的直接连infinfinf的边就行了. ...
- 2018.10.15 NOIP训练 水流成河(换根dp)
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
随机推荐
- Java异常处理:如何写出“正确”但被编译器认为有语法错误的程序
文章的标题看似自相矛盾,然而我在"正确"二字上打了引号.我们来看一个例子,关于Java异常处理(Exception Handling)的一些知识点. 看下面这段程序.方法pleas ...
- UVALive 3211 Now or Later (2-SAT)
题目的要求一个最小值最大,二分即可,但是怎么判断呢? 飞机早或者晚两种状态,可以用一个布尔变量表示,假设当前猜测为m,那么根据题意, 如果x和y所对应的时间冲突那么就是¬(xΛy)化成或的形式(¬x) ...
- Shell脚本之for循环、while循环,if语句、case语句
1. for循环一般格式: 格式1: for((条件)) do 动作 done 格式2: for 变量名 in 范围 do 动作 done1234567891011121314实验:##1. 输出数字 ...
- 2018 北京区域赛 I - Palindromes (找规律)
题目 HihoCoder - 1878 题目大意 给出k,让求出第k个回文数(k的“长度”不超过1e5) 题解 之前做过类似的题,是统计各阶段的数找到第K个回文数,但这里K太大,需要寻找新的方法. 打 ...
- CPP-练习
HW: 1.局部变量能否和全局变量重名? 答:能,局部会屏蔽全局.要用全局变量,需要使用"::" ;局部变量可以与全局变量同名,在函数内引用这个变量时,会用到同名的局部变量,而不会 ...
- StringMVCWeb接受前台值的几种方式
这些决定与request header 的Content-Type属性 1.通过@RequestParam @RequestParam Map<String, Object> pa ...
- urlrewrite地址重写实例
urlrewrite主要实现后天请求中的地址重写,防止被安全漏洞盲注入 http://tuckey.org/urlrewrite/ 下载最新的jar 下面是使用说明: 1.下载urlrewrite,官 ...
- 实体类和JSON对象之间相互转化
. [代码]工具类 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3 ...
- iOS 第三方类库之MBProgressHUD
github链接地址 MBProgressHUD是一个开源的第三方类库实现了很多种样式的提示框,类似Activity indicator,使用上简单.方便,并且可以对显示的内容进行自定义,功能很强大, ...
- js和JQuery中的获取宽、高、位置等方法整理
1.获取当前窗口宽度区别(需要注意的是用的window还是document)JQuery:console.log($(window).width()); //获取窗口可视区域的宽度 console.l ...