socket层

图示,没有找到socket,那么socket层在哪儿呢?

看图:

socket是什么

Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。

所以,我们无需深入理解tcp/udp协议,socket已经为我们封装好了,我们只需要遵循socket的规定去编程,写出的程序自然就是遵循tcp/udp标准的。

也有人将socket说成ip+port,ip是用来标识互联网中的一台主机的位置,而port是用来标识这台机器上的一个应用程序,ip地址是配置到网卡上的,而port是应用程序开启的,ip与port的绑定就标识了互联网中独一无二的一个应用程序

而程序的pid是同一台机器上不同进程或者线程的标识

套接字发展史及分类

套接字起源于 20 世纪 70 年代加利福尼亚大学伯克利分校版本的 Unix,即人们所说的 BSD Unix。 因此,有时人们也把套接字称为“伯克利套接字”或“BSD 套接字”。一开始,套接字被设计用在同 一台主机上多个应用程序之间的通讯。这也被称进程间通讯,或 IPC。套接字有两种(或者称为有两个种族),分别是基于文件型的和基于网络型的。

基于文件类型的套接字家族

套接字家族的名字:AF_UNIX

unix一切皆文件,基于文件的套接字调用的就是底层的文件系统来取数据,两个套接字进程运行在同一机器,可以通过访问同一个文件系统间接完成通信

基于网络类型的套接字家族

套接字家族的名字:AF_INET

(还有AF_INET6被用于ipv6,还有一些其他的地址家族,不过,他们要么是只用于某个平台,要么就是已经被废弃,或者是很少被使用,或者是根本没有实现,所有地址家族中,AF_INET是使用最广泛的一个,python支持很多种地址家族,但是由于我们只关心网络编程,所以大部分时候我么只使用AF_INET)

套接字工作流程

一个生活中的场景。你要打电话给一个朋友,先拨号,朋友听到电话铃声后提起电话,这时你和你的朋友就建立起了连接,就可以讲话了。等交流结束,挂断电话结束此次交谈。 生活中的场景就解释了这工作原理。

先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接。在这时如果有个客户端初始化一个Socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器端的连接就建立了。客户端发送数据请求,服务器端接收请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束

socket()模块函数用法

import socket
socket.socket(socket_family,socket_type,protocal=0)
socket_family 可以是 AF_UNIX 或 AF_INET。socket_type 可以是 SOCK_STREAM 或 SOCK_DGRAM。protocol 一般不填,默认值为 0。 获取tcp/ip套接字
tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 获取udp/ip套接字
udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 由于 socket 模块中有太多的属性。我们在这里破例使用了'from module import *'语句。使用 'from socket import *',我们就把 socket 模块里的所有属性都带到我们的命名空间里了,这样能 大幅减短我们的代码。
例如tcpSock = socket(AF_INET, SOCK_STREAM)
服务端套接字函数
s.bind() 绑定(主机,端口号)到套接字
s.listen() 开始TCP监听
s.accept() 被动接受TCP客户的连接,(阻塞式)等待连接的到来 客户端套接字函数
s.connect() 主动初始化TCP服务器连接
s.connect_ex() connect()函数的扩展版本,出错时返回出错码,而不是抛出异常 公共用途的套接字函数
s.recv() 接收TCP数据
s.send() 发送TCP数据(send在待发送数据量大于己端缓存区剩余空间时,数据丢失,不会发完)
s.sendall() 发送完整的TCP数据(本质就是循环调用send,sendall在待发送数据量大于己端缓存区剩余空间时,数据不丢失,循环调用send直到发完)
s.recvfrom() 接收UDP数据
s.sendto() 发送UDP数据
s.getpeername() 连接到当前套接字的远端的地址
s.getsockname() 当前套接字的地址
s.getsockopt() 返回指定套接字的参数
s.setsockopt() 设置指定套接字的参数
s.close() 关闭套接字 面向锁的套接字方法
s.setblocking() 设置套接字的阻塞与非阻塞模式
s.settimeout() 设置阻塞套接字操作的超时时间
s.gettimeout() 得到阻塞套接字操作的超时时间 面向文件的套接字的函数
s.fileno() 套接字的文件描述符
s.makefile() 创建一个与该套接字相关的文件

基于TCP的套接字

tcp是基于链接的,必须先启动服务端,然后再启动客户端去链接服务端

tcp服务端

import socket

#1.获取tcp/ip套接字(创建了一个服务器对象)
#AF_INET 基于网络类型的套接字家族 SOCK_STREAM 指的是TCP协议
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM) #2.绑定端口
#绑定之前加上一条socket配置,重用ip和端口(防止端口被占用)
s.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)
s.bind(('127.0.0.1',8080)) #0-65535端口范围 1-1024 系统占用
#127.0.0.1 回送地址,(保留地址,一般测试用) #3.开始TCP监听
s.listen(5) #4.等待TCP客户端的连接
conn,addr = s.accept() #accept接收到的是一个元组(conn,client_addr)
#client_addr客户端地址(包含ip地址和端口)
# conn 链接对象(可以接收和发送消息)
#变量的解压(分别赋值)
print(conn)
print(addr) #客户端ip地址和端口 #5.信息的接收和发送
data = conn.recv(1024) #最大接收的字节数
conn.send(data) #6.关闭链接对象
# conn.close() #7.关闭tcp/ip套接字(关闭服务器对象)
# s.close()

tcp客户端

import socket

#1.获取tcp/ip套接字(创建了一个客户端对象)
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM) #2.发送链接
s.connect(('127.0.0.1',8080)) #3.消息的发送和接收
s.send('kitty'.encode('utf-8')) #客户端发送信息,编码成utf-8
data = s.recv(1024) #客户端接收服务器发过来的信息
print(data.decode('utf-8'))
#4.tcp/ip套接字(关闭关闭客户端对象)
s.close()

加上循环:

服务端:

import socket
import os
#1.获取tcp/ip套接字(创建了一个服务器对象)
#AF_INET 基于网络类型的套接字家族 SOCK_STREAM 指的是TCP协议
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM) #2.绑定端口
#绑定之前加上一条socket配置,重用ip和端口(防止端口被占用)
s.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)
s.bind(('127.0.0.1',8080)) #0-65535端口范围 1-1024 系统占用
#127.0.0.1 回送地址,(保留地址,一般测试用) #3.开始TCP监听
s.listen(5) #4.等待TCP客户端的连接
while True:
conn,addr = s.accept() #accept接收到的是一个元组(conn,client_addr)
#client_addr客户端地址(包含ip地址和端口)
# conn 链接对象(可以接收和发送消息)
#变量的解压(分别赋值)
# print(conn)
# print(addr) #客户端ip地址和端口 #5.信息的接收和发送
while True:
try:
data = conn.recv(1024) #最大接收的字节数
# print(data.decode('utf-8'))
conn.send(data) #向客户端发送消息
# os.popen(data.decode('utf-8'),'r',1)
#os.popen(data.decode('utf-8'))
except ConnectionResetError: #客户端关闭(或出现其他故障断开连接),会报错,然后服务器就跳出循环
break
#6.关闭链接对象
conn.close() #7.关闭tcp/ip套接字(关闭服务器对象)
s.close()

客户端:

import socket

#1.获取tcp/ip套接字(创建了一个客户端对象)
c = socket.socket(socket.AF_INET,socket.SOCK_STREAM) #2.发送链接
c.connect(('127.0.0.1',8080)) #3.消息的发送和接收
while True:
t = input('>>:')
if not t:continue
c.send(t.encode('utf-8')) #客户端发送信息,编码成utf-8
data = c.recv(1024) #客户端接收服务器发过来的信息
print(data.decode('utf-8'))
#4.tcp/ip套接字(关闭关闭客户端对象)
c.close()

注意:如果重启服务端可能遇到

这个是由于你的服务端仍然存在四次挥手的time_wait状态在占用地址(如果不懂,请深入研究1.tcp三次握手,四次挥手 2.syn洪水攻击 3.服务器高并发情况下会有大量的time_wait状态的优化方法)

解决办法:

#加入一条socket配置,重用ip和端口

phone=socket(AF_INET,SOCK_STREAM)
phone.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) #就是它,在bind前加
phone.bind(('127.0.0.1',8080))
发现系统存在大量TIME_WAIT状态的连接,通过调整linux内核参数解决,
vi /etc/sysctl.conf 编辑文件,加入以下内容:
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_fin_timeout = 30 然后执行 /sbin/sysctl -p 让参数生效。 net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭; net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭; net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。 net.ipv4.tcp_fin_timeout 修改系統默认的 TIMEOUT 时间

基于UDP的套接字

udp是无链接的,先启动哪一端都不会报错

udp服务端:

from socket import *

s = socket(AF_INET, SOCK_DGRAM)             #创建一个服务器的套接字
s.bind(('127.0.0.1', 8080)) #给服务器绑定ip和端口
while True: #服务器循环接收/发送消息(无限循环)
data, address = s.recvfrom(1024) #接收客户端发过来的消息
s.sendto(data.upper(), address) #给客户端发送消息
s.close() #关闭服务器

udp客户端:

from socket import *

c = socket(AF_INET, SOCK_DGRAM)             #创建一个客户端套接字
while True: #客户端通信循环
cmd = input('>>:').strip()
if not cmd:
continue
c.sendto(cmd.encode('utf-8'), ('127.0.0.1', 8080)) #给服务器发送消息
data, address = c.recvfrom(1024) #接收服务器发送过来的消息
print(data.decode('utf-8'))
c.close() #关闭客户端

qq聊天(由于udp无连接,所以可以同时多个客户端去跟服务端通信)

#_*_coding:utf-8_*_
import socket
ip_port=('127.0.0.1',8081)
udp_server_sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
udp_server_sock.bind(ip_port) while True:
qq_msg,addr=udp_server_sock.recvfrom(1024)
print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],qq_msg.decode('utf-8')))
back_msg=input('回复消息: ').strip() udp_server_sock.sendto(back_msg.encode('utf-8'),addr)

udp服务端

#_*_coding:utf-8_*_
import socket
BUFSIZE=1024
udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) qq_name_dic={
'李渊':('127.0.0.1',8080),
'赵匡胤':('127.0.0.1',8080),
'成吉思汗':('127.0.0.1',8080),
'朱元璋':('127.0.0.1',8080),
} while True:
qq_name=input('请选择聊天对象: ').strip()
while True:
msg=input('请输入消息,回车发送: ').strip()
if msg == 'quit':break
if not msg or not qq_name or qq_name not in qq_name_dic:continue
udp_client_socket.sendto(msg.encode('utf-8'),qq_name_dic[qq_name]) back_msg,addr=udp_client_socket.recvfrom(BUFSIZE)
print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],back_msg.decode('utf-8'))) udp_client_socket.close()

udp客户端1

#_*_coding:utf-8_*_
import socket
BUFSIZE=1024
udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) qq_name_dic={
'李渊':('127.0.0.1',8080),
'赵匡胤':('127.0.0.1',8080),
'成吉思汗':('127.0.0.1',8080),
'朱元璋':('127.0.0.1',8080),
} while True:
qq_name=input('请选择聊天对象: ').strip()
while True:
msg=input('请输入消息,回车发送: ').strip()
if msg == 'quit':break
if not msg or not qq_name or qq_name not in qq_name_dic:continue
udp_client_socket.sendto(msg.encode('utf-8'),qq_name_dic[qq_name]) back_msg,addr=udp_client_socket.recvfrom(BUFSIZE)
print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],back_msg.decode('utf-8'))) udp_client_socket.close()

udp客户端2

时间服务器:

#_*_coding:utf-8_*_
from socket import *
from time import strftime ip_port=('127.0.0.1',9000)
bufsize=1024 tcp_server=socket(AF_INET,SOCK_DGRAM)
tcp_server.bind(ip_port) while True:
msg,addr=tcp_server.recvfrom(bufsize)
print('===>',msg) if not msg:
time_fmt='%Y-%m-%d %X'
else:
time_fmt=msg.decode('utf-8')
back_msg=strftime(time_fmt) tcp_server.sendto(back_msg.encode('utf-8'),addr) tcp_server.close()

ntp服务端

#_*_coding:utf-8_*_
from socket import *
ip_port=('127.0.0.1',9000)
bufsize=1024 tcp_client=socket(AF_INET,SOCK_DGRAM) while True:
msg=input('请输入时间格式(例%Y %m %d)>>: ').strip()
tcp_client.sendto(msg.encode('utf-8'),ip_port) data=tcp_client.recv(bufsize) print(data.decode('utf-8')) tcp_client.close()

ntp客户端

粘包现象

让我们基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行dir 3:执行ifconfig)

服务端:

#_*_coding:utf-8_*_

from socket import *
import subprocess ip_port=('127.0.0.1',8080)
BUFSIZE=1024 tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5) while True:
conn,addr=tcp_socket_server.accept()
print('客户端',addr) while True:
cmd=conn.recv(BUFSIZE)
if len(cmd) == 0:break res=subprocess.Popen(cmd.decode('utf-8'),shell=True,
stdout=subprocess.PIPE,
stdin=subprocess.PIPE,
stderr=subprocess.PIPE) stderr=act_res.stderr.read()
stdout=act_res.stdout.read()
conn.send(stderr)
conn.send(stdout)

客户端:

#_*_coding:utf-8_*_

import socket
BUFSIZE=1024
ip_port=('127.0.0.1',8080) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(ip_port) while True:
msg=input('>>: ').strip()
if len(msg) == 0:continue
if msg == 'quit':break s.send(msg.encode('utf-8'))
act_res=s.recv(BUFSIZE) print(act_res.decode('utf-8'),end='')

上述程序是基于tcp的socket,在运行时会发生粘包

注意:

res=subprocess.Popen(cmd.decode('utf-8'),
shell=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE)

的结果的编码是以当前所在的系统为准的,如果是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端需要用GBK解码

且只能从管道里读一次结果

让我们再基于udp制作一个远程执行命令的程序

from socket import *
import subprocess ip_port=('127.0.0.1',9003)
bufsize=1024 udp_server=socket(AF_INET,SOCK_DGRAM)
udp_server.bind(ip_port) while True:
#收消息
cmd,addr=udp_server.recvfrom(bufsize)
print('用户命令----->',cmd) #逻辑处理
res=subprocess.Popen(cmd.decode('utf-8'),shell=True,stderr=subprocess.PIPE,stdin=subprocess.PIPE,stdout=subprocess.PIPE)
stderr=res.stderr.read()
stdout=res.stdout.read() #发消息
udp_server.sendto(stderr,addr)
udp_server.sendto(stdout,addr)
udp_server.close()

服务端

from socket import *
ip_port=('127.0.0.1',9003)
bufsize=1024 udp_client=socket(AF_INET,SOCK_DGRAM) while True:
msg=input('>>: ').strip()
udp_client.sendto(msg.encode('utf-8'),ip_port) data,addr=udp_client.recvfrom(bufsize)
print(data.decode('utf-8'),end='')

客户端

上述程序是基于udp的socket,在运行时永远不会发生粘包

什么是粘包?

只有TCP有粘包现象,UDP永远不会粘包

为什么呢?

首先需要掌握一个socket收发消息的原理

发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。

例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束

所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。

此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。

  1. TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
  2. UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。不会使用块的合并优化算法,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。
  3. tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),那也不是空消息,udp协议会帮你封装上消息头,实验略

udp的recvfrom是阻塞的,一个recvfrom(x)必须对唯一一个sendinto(y),收完了x个字节的数据就算完成,若是y>x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠

tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。

两种情况下会发生粘包。

1、发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据量很小,会合到一起,产生粘包)

from socket import *
ip_port=('127.0.0.1',8080) tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5) conn,addr=tcp_socket_server.accept() data1=conn.recv(10)
data2=conn.recv(10) print('----->',data1.decode('utf-8'))
print('----->',data2.decode('utf-8')) conn.close()

服务端

import socket
BUFSIZE=1024
ip_port=('127.0.0.1',8080) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(ip_port) s.send('hello'.encode('utf-8'))
s.send('feng'.encode('utf-8'))

客户端

2、接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包)

from socket import *
ip_port=('127.0.0.1',8080) tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5) conn,addr=tcp_socket_server.accept() data1=conn.recv(2) #一次没有收完整
data2=conn.recv(10)#下次收的时候,会先取旧的数据,然后取新的 print('----->',data1.decode('utf-8'))
print('----->',data2.decode('utf-8')) conn.close()

服务端

import socket
BUFSIZE=1024
ip_port=('127.0.0.1',8080) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(ip_port) s.send('hello feng'.encode('utf-8'))

客户端

拆包的发生情况

当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送出去。

补充问题一:为何tcp是可靠传输,udp是不可靠传输

tcp在数据传输时,发送端先把数据发送到自己的缓存中,然后协议控制将缓存中的数据发往对端,对端返回一个ack=1,发送端则清理缓存中的数据,对端返回ack=0,则重新发送数据,所以tcp是可靠的

而udp发送数据,对端是不会返回确认信息的,因此不可靠

补充问题二:send(字节流)和recv(1024)及sendall

recv里指定的1024意思是从缓存里一次拿出1024个字节的数据

send的字节流是先放入己端缓存,然后由协议控制将缓存内容发往对端,如果待发送的字节流大小大于缓存剩余空间,那么数据丢失,用sendall就会循环调用send,数据不会丢失

解决粘包方法

方式一:

问题的根源在于,接收端不知道发送端将要传送的字节流的长度,所以解决粘包的方法就是围绕,如何让发送端在发送数据前,把自己将要发送的字节流总大小让接收端知晓,然后接收端来一个死循环接收完所有数据

但是程序的运行速度远快于网络传输速度,所以在发送一段字节前,先用send去发送该字节流长度,这种方式会放大网络延迟带来的性能损耗

方式二:

为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,对端在接收时,先从缓存中取出定长的报头,然后再取真实数据

struct模块

该模块可以把一个类型,如数字,转成固定长度的bytes

import struct
data_size = len('abcdefghijklmn') #数据的长度
print(len(data_size)) #
head = struct.pack('i',data_size)
print(head) #b'\x0e\x00\x00\x00'
print(len(head)) # 4 转换成4个固定长度的字节

这样对方就可以收固定长度的报头

data_size = c.recv(4)
data = c.recv(data_size) #data = c.recv(14)

======================================

struct.error: 'i' format requires -2147483648 <= number <= 2147483647 #这个是范围

#http://www.cnblogs.com/coser/archive/2011/12/17/2291160.html
__author__ = 'Linhaifeng'
import struct
import binascii
import ctypes values1 = (1, 'abc'.encode('utf-8'), 2.7)
values2 = ('defg'.encode('utf-8'),101)
s1 = struct.Struct('I3sf')
s2 = struct.Struct('4sI') print(s1.size,s2.size)
prebuffer=ctypes.create_string_buffer(s1.size+s2.size)
print('Before : ',binascii.hexlify(prebuffer))
# t=binascii.hexlify('asdfaf'.encode('utf-8'))
# print(t) s1.pack_into(prebuffer,0,*values1)
s2.pack_into(prebuffer,s1.size,*values2) print('After pack',binascii.hexlify(prebuffer))
print(s1.unpack_from(prebuffer,0))
print(s2.unpack_from(prebuffer,s1.size)) s3=struct.Struct('ii')
s3.pack_into(prebuffer,0,123,123)
print('After pack',binascii.hexlify(prebuffer))
print(s3.unpack_from(prebuffer,0))

struct详细用法

import json,struct
#假设通过客户端上传1T:1073741824000的文件a.txt #为避免粘包,必须自定制报头
header={'file_size':1073741824000,'file_name':'/a/b/c/d/e/a.txt','md5':'8f6fbf8347faa4924a76856701edb0f3'} #1T数据,文件路径和md5值 #为了该报头能传送,需要序列化并且转为bytes
head_bytes=bytes(json.dumps(header),encoding='utf-8') #序列化并转成bytes,用于传输 #为了让客户端知道报头的长度,用struck将报头长度这个数字转成固定长度:4个字节
head_len_bytes=struct.pack('i',len(head_bytes)) #这4个字节里只包含了一个数字,该数字是报头的长度 #客户端开始发送
conn.send(head_len_bytes) #先发报头的长度,4个bytes
conn.send(head_bytes) #再发报头的字节格式
conn.sendall(文件内容) #然后发真实内容的字节格式 #服务端开始接收
head_len_bytes=s.recv(4) #先收报头4个bytes,得到报头长度的字节格式
x=struct.unpack('i',head_len_bytes)[0] #提取报头的长度 head_bytes=s.recv(x) #按照报头长度x,收取报头的bytes格式
header=json.loads(json.dumps(header)) #提取报头 #最后根据报头的内容提取真实的数据,比如
real_data_len=s.recv(header['file_size'])
s.recv(real_data_len)

自定义报头:

import socket,struct,json
import subprocess
phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) phone.bind(('127.0.0.1',8080)) phone.listen(5) while True:
conn,addr=phone.accept()
while True:
cmd=conn.recv(1024)
if not cmd:break
print('cmd: %s' %cmd) res=subprocess.Popen(cmd.decode('utf-8'),
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
err=res.stderr.read()
print(err)
if err:
back_msg=err
else:
back_msg=res.stdout.read() conn.send(struct.pack('i',len(back_msg))) #先发back_msg的长度
conn.sendall(back_msg) #在发真实的内容 conn.close()

服务端

import socket,time,struct

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if len(msg) == 0:continue
if msg == 'quit':break s.send(msg.encode('utf-8')) l=s.recv(4)
x=struct.unpack('i',l)[0]
print(type(x),x)
# print(struct.unpack('I',l))
r_s=0
data=b''
while r_s < x:
r_d=s.recv(1024)
data+=r_d
r_s+=len(r_d) # print(data.decode('utf-8'))
print(data.decode('gbk')) #windows默认gbk编码

客户端

我们可以把报头做成字典,字典里包含将要发送的真实数据的详细信息,然后json序列化,然后用struck将序列化后的数据长度打包成4个字节(4个自己足够用了)

发送时:

先发报头长度

再编码报头内容然后发送

最后发真实内容

接收时:

先手报头长度,用struct取出来

根据取出的长度收取报头内容,然后解码,反序列化

从反序列化的结果中取出待取数据的详细信息,然后去取真实的数据内容

import socket,struct,json
import subprocess
phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) phone.bind(('127.0.0.1',8080)) phone.listen(5) while True:
conn,addr=phone.accept()
while True:
cmd=conn.recv(1024)
if not cmd:break
print('cmd: %s' %cmd) res=subprocess.Popen(cmd.decode('utf-8'),
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
err=res.stderr.read()
print(err)
if err:
back_msg=err
else:
back_msg=res.stdout.read() headers={'data_size':len(back_msg)}
head_json=json.dumps(headers)
head_json_bytes=bytes(head_json,encoding='utf-8') conn.send(struct.pack('i',len(head_json_bytes))) #先发报头的长度
conn.send(head_json_bytes) #再发报头
conn.sendall(back_msg) #在发真实的内容 conn.close()

服务端(定制复杂点的报头)

from socket import *
import struct,json ip_port=('127.0.0.1',8080)
client=socket(AF_INET,SOCK_STREAM)
client.connect(ip_port) while True:
cmd=input('>>: ')
if not cmd:continue
client.send(bytes(cmd,encoding='utf-8')) head=client.recv(4)
head_json_len=struct.unpack('i',head)[0]
head_json=json.loads(client.recv(head_json_len).decode('utf-8'))
data_len=head_json['data_size'] recv_size=0
recv_data=b''
while recv_size < data_len:
recv_data+=client.recv(1024)
recv_size+=len(recv_data) print(recv_data.decode('utf-8'))
#print(recv_data.decode('gbk')) #windows默认gbk编码

客户端

FTP:上传下载文件

import socket
import struct
import json
import subprocess
import os class MYTCPServer:
address_family = socket.AF_INET socket_type = socket.SOCK_STREAM allow_reuse_address = False max_packet_size = 8192 coding='utf-8' request_queue_size = 5 server_dir='file_upload' def __init__(self, server_address, bind_and_activate=True):
"""Constructor. May be extended, do not override."""
self.server_address=server_address
self.socket = socket.socket(self.address_family,
self.socket_type)
if bind_and_activate:
try:
self.server_bind()
self.server_activate()
except:
self.server_close()
raise def server_bind(self):
"""Called by constructor to bind the socket.
"""
if self.allow_reuse_address:
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.socket.bind(self.server_address)
self.server_address = self.socket.getsockname() def server_activate(self):
"""Called by constructor to activate the server.
"""
self.socket.listen(self.request_queue_size) def server_close(self):
"""Called to clean-up the server.
"""
self.socket.close() def get_request(self):
"""Get the request and client address from the socket.
"""
return self.socket.accept() def close_request(self, request):
"""Called to clean up an individual request."""
request.close() def run(self):
while True:
self.conn,self.client_addr=self.get_request()
print('from client ',self.client_addr)
while True:
try:
head_struct = self.conn.recv(4)
if not head_struct:break head_len = struct.unpack('i', head_struct)[0]
head_json = self.conn.recv(head_len).decode(self.coding)
head_dic = json.loads(head_json) print(head_dic)
#head_dic={'cmd':'put','filename':'a.txt','filesize':123123}
cmd=head_dic['cmd']
if hasattr(self,cmd):
func=getattr(self,cmd)
func(head_dic)
except Exception:
break def put(self,args):
file_path=os.path.normpath(os.path.join(
self.server_dir,
args['filename']
)) filesize=args['filesize']
recv_size=0
print('----->',file_path)
with open(file_path,'wb') as f:
while recv_size < filesize:
recv_data=self.conn.recv(self.max_packet_size)
f.write(recv_data)
recv_size+=len(recv_data)
print('recvsize:%s filesize:%s' %(recv_size,filesize)) tcpserver1=MYTCPServer(('127.0.0.1',8080)) tcpserver1.run()

服务端

import socket
import struct
import json
import os class MYTCPClient:
address_family = socket.AF_INET socket_type = socket.SOCK_STREAM allow_reuse_address = False max_packet_size = 8192 coding='utf-8' request_queue_size = 5 def __init__(self, server_address, connect=True):
self.server_address=server_address
self.socket = socket.socket(self.address_family,
self.socket_type)
if connect:
try:
self.client_connect()
except:
self.client_close()
raise def client_connect(self):
self.socket.connect(self.server_address) def client_close(self):
self.socket.close() def run(self):
while True:
inp=input(">>: ").strip()
if not inp:continue
l=inp.split()
cmd=l[0]
if hasattr(self,cmd):
func=getattr(self,cmd)
func(l) def put(self,args):
cmd=args[0]
filename=args[1]
if not os.path.isfile(filename):
print('file:%s is not exists' %filename)
return
else:
filesize=os.path.getsize(filename) head_dic={'cmd':cmd,'filename':os.path.basename(filename),'filesize':filesize}
print(head_dic)
head_json=json.dumps(head_dic)
head_json_bytes=bytes(head_json,encoding=self.coding) head_struct=struct.pack('i',len(head_json_bytes))
self.socket.send(head_struct)
self.socket.send(head_json_bytes)
send_size=0
with open(filename,'rb') as f:
for line in f:
self.socket.send(line)
send_size+=len(line)
print(send_size)
else:
print('upload successful') client=MYTCPClient(('127.0.0.1',8080)) client.run()

客户端

认证客户端的链接合法性

如果你想在分布式系统中实现一个简单的客户端链接认证功能,又不像SSL那么复杂,那么利用hmac+加盐的方式来实现

from socket import *
import hmac,os secret_key=b'linhaifeng bang bang bang'
def conn_auth(conn):
'''
认证客户端链接
:param conn:
:return:
'''
print('开始验证新链接的合法性')
msg=os.urandom(32)
conn.sendall(msg)
h=hmac.new(secret_key,msg)
digest=h.digest()
respone=conn.recv(len(digest))
return hmac.compare_digest(respone,digest) def data_handler(conn,bufsize=1024):
if not conn_auth(conn):
print('该链接不合法,关闭')
conn.close()
return
print('链接合法,开始通信')
while True:
data=conn.recv(bufsize)
if not data:break
conn.sendall(data.upper()) def server_handler(ip_port,bufsize,backlog=5):
'''
只处理链接
:param ip_port:
:return:
'''
tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(backlog)
while True:
conn,addr=tcp_socket_server.accept()
print('新连接[%s:%s]' %(addr[0],addr[1]))
data_handler(conn,bufsize) if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
server_handler(ip_port,bufsize)

服务端

from socket import *
import hmac,os secret_key=b'linhaifeng bang bang bang'
def conn_auth(conn):
'''
验证客户端到服务器的链接
:param conn:
:return:
'''
msg=conn.recv(32)
h=hmac.new(secret_key,msg)
digest=h.digest()
conn.sendall(digest) def client_handler(ip_port,bufsize=1024):
tcp_socket_client=socket(AF_INET,SOCK_STREAM)
tcp_socket_client.connect(ip_port) conn_auth(tcp_socket_client) while True:
data=input('>>: ').strip()
if not data:continue
if data == 'quit':break tcp_socket_client.sendall(data.encode('utf-8'))
respone=tcp_socket_client.recv(bufsize)
print(respone.decode('utf-8'))
tcp_socket_client.close() if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
client_handler(ip_port,bufsize)

客户端

from socket import *

def client_handler(ip_port,bufsize=1024):
tcp_socket_client=socket(AF_INET,SOCK_STREAM)
tcp_socket_client.connect(ip_port) while True:
data=input('>>: ').strip()
if not data:continue
if data == 'quit':break tcp_socket_client.sendall(data.encode('utf-8'))
respone=tcp_socket_client.recv(bufsize)
print(respone.decode('utf-8'))
tcp_socket_client.close() if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
client_handler(ip_port,bufsize)

客户端(非法:不知道加密方式)

from socket import *
import hmac,os secret_key=b'linhaifeng bang bang bang1111'
def conn_auth(conn):
'''
验证客户端到服务器的链接
:param conn:
:return:
'''
msg=conn.recv(32)
h=hmac.new(secret_key,msg)
digest=h.digest()
conn.sendall(digest) def client_handler(ip_port,bufsize=1024):
tcp_socket_client=socket(AF_INET,SOCK_STREAM)
tcp_socket_client.connect(ip_port) conn_auth(tcp_socket_client) while True:
data=input('>>: ').strip()
if not data:continue
if data == 'quit':break tcp_socket_client.sendall(data.encode('utf-8'))
respone=tcp_socket_client.recv(bufsize)
print(respone.decode('utf-8'))
tcp_socket_client.close() if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
client_handler(ip_port,bufsize)

客户端(非法:不知道secret_key)

socketserver实现并发

基于tcp的套接字,关键就是两个循环,一个链接循环,一个通信循环

socketserver模块中分两大类:server类(解决链接问题)和request类(解决通信问题)

server类:

request类:

继承关系:

以下述代码为例,分析socketserver源码:

ftpserver=socketserver.ThreadingTCPServer(('127.0.0.1',8080),FtpServer)
ftpserver.serve_forever()

查找属性的顺序:ThreadingTCPServer->ThreadingMixIn->TCPServer->BaseServer

  1. 实例化得到ftpserver,先找类ThreadingTCPServer的__init__,在TCPServer中找到,进而执行server_bind,server_active
  2. 找ftpserver下的serve_forever,在BaseServer中找到,进而执行self._handle_request_noblock(),该方法同样是在BaseServer中
  3. 执行self._handle_request_noblock()进而执行request, client_address = self.get_request()(就是TCPServer中的self.socket.accept()),然后执行self.process_request(request, client_address)
  4. 在ThreadingMixIn中找到process_request,开启多线程应对并发,进而执行process_request_thread,执行self.finish_request(request, client_address)
  5. 上述四部分完成了链接循环,本部分开始进入处理通讯部分,在BaseServer中找到finish_request,触发我们自己定义的类的实例化,去找__init__方法,而我们自己定义的类没有该方法,则去它的父类也就是BaseRequestHandler中找....

源码分析总结:

基于tcp的socketserver我们自己定义的类中的

  1.   self.server即套接字对象
  2.   self.request即一个链接
  3.   self.client_address即客户端地址

基于udp的socketserver我们自己定义的类中的

  1.   self.request是一个元组(第一个元素是客户端发来的数据,第二部分是服务端的udp套接字对象),如(b'adsf', <socket.socket fd=200, family=AddressFamily.AF_INET, type=SocketKind.SOCK_DGRAM, proto=0, laddr=('127.0.0.1', 8080)>)
  2.   self.client_address即客户端地址
import socketserver
import struct
import json
import os
class FtpServer(socketserver.BaseRequestHandler):
coding='utf-8'
server_dir='file_upload'
max_packet_size=1024
BASE_DIR=os.path.dirname(os.path.abspath(__file__))
def handle(self):
print(self.request)
while True:
data=self.request.recv(4)
data_len=struct.unpack('i',data)[0]
head_json=self.request.recv(data_len).decode(self.coding)
head_dic=json.loads(head_json)
# print(head_dic)
cmd=head_dic['cmd']
if hasattr(self,cmd):
func=getattr(self,cmd)
func(head_dic)
def put(self,args):
file_path = os.path.normpath(os.path.join(
self.BASE_DIR,
self.server_dir,
args['filename']
)) filesize = args['filesize']
recv_size = 0
print('----->', file_path)
with open(file_path, 'wb') as f:
while recv_size < filesize:
recv_data = self.request.recv(self.max_packet_size)
f.write(recv_data)
recv_size += len(recv_data)
print('recvsize:%s filesize:%s' % (recv_size, filesize)) ftpserver=socketserver.ThreadingTCPServer(('127.0.0.1',8080),FtpServer)
ftpserver.serve_forever()

FtpServer

import socket
import struct
import json
import os class MYTCPClient:
address_family = socket.AF_INET socket_type = socket.SOCK_STREAM allow_reuse_address = False max_packet_size = 8192 coding='utf-8' request_queue_size = 5 def __init__(self, server_address, connect=True):
self.server_address=server_address
self.socket = socket.socket(self.address_family,
self.socket_type)
if connect:
try:
self.client_connect()
except:
self.client_close()
raise def client_connect(self):
self.socket.connect(self.server_address) def client_close(self):
self.socket.close() def run(self):
while True:
inp=input(">>: ").strip()
if not inp:continue
l=inp.split()
cmd=l[0]
if hasattr(self,cmd):
func=getattr(self,cmd)
func(l) def put(self,args):
cmd=args[0]
filename=args[1]
if not os.path.isfile(filename):
print('file:%s is not exists' %filename)
return
else:
filesize=os.path.getsize(filename) head_dic={'cmd':cmd,'filename':os.path.basename(filename),'filesize':filesize}
print(head_dic)
head_json=json.dumps(head_dic)
head_json_bytes=bytes(head_json,encoding=self.coding) head_struct=struct.pack('i',len(head_json_bytes))
self.socket.send(head_struct)
self.socket.send(head_json_bytes)
send_size=0
with open(filename,'rb') as f:
for line in f:
self.socket.send(line)
send_size+=len(line)
print(send_size)
else:
print('upload successful') client=MYTCPClient(('127.0.0.1',8080)) client.run()

FtpClient

socket相关的更多相关文章

  1. TCP/IP协议栈源码图解分析系列10:linux内核协议栈中对于socket相关API的实现

    题记:本系列文章的目的是抛开书本从Linux内核源代码的角度详细分析TCP/IP协议栈内核相关技术 轻松搞定TCP/IP协议栈,原创文章欢迎交流, byhankswang@gmail.com linu ...

  2. socket相关系统调用的调用流程

    最近一直在读内核网络协议栈源码,这里以ipv4/tcp为例对socket相关系统调用的流程做一个简要整理,这些相关系统调用的内部细节虽然各有不同,但其调用流程则基本一致: 调用流程: (1)系统调用 ...

  3. socket相关的开机初始化分析

    针对内核3.9 系统开启时,会使用init/main.c,然后再里面调用kernel_init(),在里面会再调用do_basic_setup(),调用do_initcalls(),调用do_one_ ...

  4. 一只简单的网络爬虫(基于linux C/C++)————socket相关及HTTP

    socket相关 建立连接 网络通信中少不了socket,该爬虫没有使用现成的一些库,而是自己封装了socket的相关操作,因为爬虫属于客户端,建立套接字和发起连接都封装在build_connect中 ...

  5. Socket 相关资料(随笔)

    由于项目上的 http 请求量较大,项目上性能跟不上.于是考虑把 短连接的 http 换成 长连接的tcp 形式 试试效果. 先 研究了一下 长连接方式.就是要用到 socket 方面的知识. pac ...

  6. python socket相关

    套接字的工作流程(基于TCP和 UDP两个协议) TCP和UDP对比 TCP(Transmission Control Protocol)可靠的.面向连接的协议(eg:打电话).传输效率低全双工通信( ...

  7. 【python之路35】网络编程之socket相关

    Socket socket通常也称作"套接字",用于描述IP地址和端口,是一个通信链的句柄,应用程序通常通过"套接字"向网络发出请求或者应答网络请求. sock ...

  8. Socket 相关的知识

    1.关于PF_INET和AF_INET的区别 在写网络程序的时候,建立TCP socket: sock = socket(PF_INET, SOCK_STREAM, 0);然后在绑定本地地址或连接远程 ...

  9. c++ socket相关

    http://blog.sina.com.cn/s/blog_43ad62c70100gtow.html,一个简单的C语言的socket服务器和客户端程序 http://www.cnblogs.com ...

随机推荐

  1. ubuntu下安装mongo扩展

    安装openssl apt-get install openssl libssl-dev libssl0.9.8 libgtk2.0-dev 安装php-pear apt-get install ph ...

  2. ldap_modify: No such object (32) matched DN: cn=config

    centos 6.9 部署 kerbors ldap 报错 [root@hadoop data]# ldapmodify -Y EXTERNAL -H ldapi:/// -f chdomain.ld ...

  3. python实战教程之自动扫雷(自己存下来学习之用)

    3.python的第三方库win32api,win32gui,win32con,Pillow,numpy,opencv可通过 pip install --upgrade SomePackage 来进行 ...

  4. 输入防抖 vue # 输入搜索的时候 及时搜索的快速访问接口的 解决方案 vue 中使用防抖和节流

    输入防抖 watch: { value (newVal, oldVal) { if (this.timer) { clearTimeout(this.timer) } this.timer = set ...

  5. JVM的异常体系

    任何程序都追求正确有效的运行,除了保证我们代码尽可能的少出错之外,我们还要考虑如何有效的处理异常,一个良好的异常框架对于系统来说是至关重要的.最近在采集框架的时候系统的了解一边,收获颇多,特此记录相关 ...

  6. python基础一 day4 字典

    增加:   结果 删:  结果: 结果:   返回值是一个元组形式的键值   改: 结果: 结果:                                      代码: info=inpu ...

  7. COM(Component Object Model)接口定义

    a COM interface is defined using a language called Interface Definition Language (IDL). The IDL file ...

  8. js实现复制input的value到剪切板

    <button class="button-code button-copy">复制链接</button><script> $(".b ...

  9. Java中的BIO,NIO,AIO分别是什么

    BIO:同步并阻塞,服务器实现模式为一个连接一个线程,即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不必要的线程开销,当然可以通过线程池机制改善.BIO方式适用 ...

  10. 前端开发中的 meta 整理

    meta是html语言head区的一个辅助性标签.也许你认为这些代码可有可无.其实如果你能够用好meta标签,会给你带来意想不到的效果,meta标签的作用有:搜索引擎优化(SEO),定义页面使用语言, ...