[noi.ac_D1T2]sort
https://www.zybuluo.com/ysner/note/1289967
题面
定义"翻转排序":每次操作均为把区间\([l,r]\)中所有数倒过来,即\(swap(a[l],a[r])+swap(a[l+1],a[r-1])+...\)。
每次操作的代价为\(r-l+1\)。
给一个序列\(a\),用"翻转排序"给它排序,并把代价控制在\(2*10^7\)以内。
- \(60pts\) \(n\leq5000\)
- \(ex25pts\) \(a[i]\in\{0,1\}\)
- \(100pts\) \(n\leq5*10^4\)
解析
感觉很符合\(noip\_T2\)难度。。。
\(60pts\)算法
仔细想想,"翻转"这个条件挺恶心的。
可以不"翻转"吗?那就只能交换相邻两个。
把序列扫\(n\)遍,每次只交换序列中相邻两个数。
这样每交换一次对应着消除一个逆序对,复杂度可控。
次数最多为\((n-1)*[(n-1)-1]/2\leq1.25*10^7\)
但是我并不知道这种排序名字叫什么。。。
复杂度\(O(n^2)\)
代码在下一档。
\(85pts\)算法
这个有点搞笑。
直接归并排序就可以了。
每次归并后把左边的\(1\)区间和右边的\(0\)区间并在一起,翻转即可。
复杂度\(O(nlogn)\)
贴上代码。
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define pc(a) putchar(a)
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=1e5+100;
int n,a[N];
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void wri(re int x)
{
if(x>9) wri(x/10);
pc(x%10+48);
}
il void solve(re int l,re int r)
{
if(l==r) return;
if(l==r-1)
{
if(a[l]>a[r]) swap(a[l],a[r]),printf("%d %d\n",l,r);
return;
}
re int mid=l+r>>1,p1=0,p2=0;
solve(l,mid);solve(mid+1,r);
fp(i,l,mid) if(a[i]==1) {p1=i;break;}
fp(i,mid+1,r) if(a[i]==1) {p2=i;break;}
if(!p1) return;
if(!p2) {printf("%d %d\n",p1,r);reverse(a+p1,a+r+1);return;}
printf("%d %d\n",p1,p2-1);reverse(a+p1,a+p2);
return;
}
int main()
{
n=gi();
fp(i,1,n) a[i]=gi();
if(n<=5000)
{
fp(i,1,n)
{
re int tag=0;
fp(j,1,n-1)
if(a[j]>a[j+1]) tag=1,wri(j),pc(' '),wri(j+1),pc('\n'),swap(a[j],a[j+1]);
if(!tag) break;
}
puts("-1 -1");
return 0;
}
solve(1,n);
puts("-1 -1");
return 0;
}
\(100pts\)算法
蒟蒻其实并不知道快排原理
快排的原理是,在向下分治前,先选取一个基准数,通过归并排序,把该分治区间中的小于等于其的数移到左边,大于其的数移到右边。
归并的过程中可以通过"翻转",把左区间中的大于其的数与右区间中小于等于其的数一次交换完毕。
然后继续向下分治即可。
基准数就是选,该区间中间位置,在排序完后的\(a\)中对应的值。(记得把值离散化)
复杂度\(O(nlog^2n)\)。
很对但是想不到。。。
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=1e5+100;
ll n,a[N],b[N];
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il int Qsort(re int l,re int r,re ll B)
{
if(l==r) return l+(a[l]<=B);
re int mid=l+r>>1,p1=Qsort(l,mid,B),p2=Qsort(mid+1,r,B)-1;
if(p1!=mid+1&&p2!=mid)
{
printf("%d %d\n",p1,p2);
reverse(a+p1,a+p2+1);
}
return p1+(p2-mid);
}
il void solve(re int l,re int r)
{
if(l==r) return;
re int mid=l+r>>1;
Qsort(l,r,b[mid]);
solve(l,mid);solve(mid+1,r);
}
int main()
{
n=gi();
fp(i,1,n) b[i]=a[i]=gi()*n+i;
sort(b+1,b+1+n);
solve(1,n);
puts("-1 -1");
return 0;
}
[noi.ac_D1T2]sort的更多相关文章
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- NOI.AC 32 Sort——分治
题目:http://noi.ac/problem/32 从全是0和1的情况入手,可以像线段树一样分治下去,回到本层的时候就是左半部的右边是1,右半部的左边是0,把这两部分换一下就行.代价和时间一样是n ...
- noi.ac day1t3 Sort
传送门 分析 快排的原理是以任意一个数为标准,然后把所有小于它的数换到它的左边,所有大于它的数换到它的右边.我们就使用快排的思路,分治整个区间.对于每个区间以排好序的这个数列的中间位置的值为标准,然后 ...
- noi.ac NOIP2018 全国热身赛 第四场 T2 sort
[题解] 跟51nod 1105差不多. 二分答案求出第L个数和第R个数,check的时候再套一个二分或者用two pointers. 最后枚举ai在b里面二分,找到所有范围内的数,排序后输出. 注意 ...
- [NOI.AC#32]sort 构造
链接 50分做法(只有0,1) 根据归并排序的思想,假设我们现在已经把 \(l\dots mid\) 和 \(mid+1\dots r\) 排好序 只要把左边连续的1和右边连续的0翻转即可 inlin ...
- NOI题库刷题日志 (贪心篇题解)
这段时间在NOI题库上刷了刷题,来写点心得和题解 一.寻找平面上的极大点 2704:寻找平面上的极大点 总时间限制: 1000ms 内存限制: 65536kB 描述 在一个平面上,如果有两个点( ...
- NOI考前乱写
还有13天NOI,把各种乱七八糟的算法都重新过一遍还是比较有必要的... //HDU 5046 Airport //DancingLink #include<iostream> #incl ...
- 数据结构(线段树):NOI 2016 区间
[问题描述] [输入格式] [输出格式] [样例输入] 6 3 3 5 1 2 3 4 2 2 1 5 1 4 [样例输出] 2 [样例说明] [更多样例] 下载 [样例 2 输入输出] 见目录下的 ...
- [NOI 2014]魔法森林
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
随机推荐
- Linux一键安装web环境全攻略phpstudy版
此教程主要是应对阿里云Linux云服务器ecs的web环境安装,理论上不限于阿里云服务器,此教程对所有Linux云服务器都具有参考价值. 写这篇文章的目的:网上有很多关于Linux一键安装web环境全 ...
- get方法和set方法
定义一个类,该类有一个私有成员变量,通过构造方法将其进行赋初值,并提供该成员的getXXX()和setXXX()方法 提示:假设有private String name;则有 public void ...
- spark streaming基于Kafka的开发
spark streaming使用Kafka数据源进行数据处理,本文侧重讲述实践使用. 一.基于receiver的方式 在使用receiver的时候,如果receiver和partition分配不当, ...
- 【判断二分图】C. Catch
https://www.bnuoj.com/v3/contest_show.php?cid=9154#problem/C [题意] 给定一个无向图,给定小偷的起始位置 从这个起始位置开始,小偷可以在单 ...
- java.lang.ClassNotFoundException: org.apache.jsp.WEB_002dINF.views.login_jsp
背景:SpringBoot的项目配置了对jsp的支持,走控制器就报这个错误.相关配置如下: <!-- JSP BEGIN --> <dependency> <groupI ...
- android开发里跳过的坑——onActivityResult在启动另一个activity的时候马上回调
该问题是由于被启动的activity的launchMode为singleTask模式,该模式下不可以使用onActivityResult,要使用onActivityResult,被启动的activit ...
- PHP PDO使用
PHP操作MySQL数据库方式有三种: *1. mysql 最原始的.纯过程化的 如连接: mysql_connect(主机名,账号,密码); 2. mysqli 改进版的.兼容过程化和面向对象化操作 ...
- 创建Django项目(六)——模板
2013-08-07 22:42:30| 1.设置模板路径 打开 settings.py 文件,修改 TEMPLATE_DIRS 内容,指向模板存放的绝对路径,而不 ...
- [bzoj3238][Ahoi2013]差异_后缀数组_单调栈
差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...
- JSP的EL表达式语言
以下内容引用自http://wiki.jikexueyuan.com/project/jsp/expression-language.html: JSP表达式语言(EL)可以方便地访问存储在JavaB ...