Description

Transmission Gate

Solution

这一题可以考虑Dp,设\(Dp[i][j]\) 为在第i段中,以j颜色为结尾的最后一小段长度的最小值。

那么可以先考虑以表为结尾的情况:

  1. 表上一个线段的结尾,就把表看作分隔符,那么分隔符的数量下界是$lowerBound = \lceil \frac{(Dp[i - 1][j] + a[i])}{k} \rceil - 1 \(, 如果`b[i] > cnt`, 那么\)dp[i][j] = 1\(,上界\)upperBound$是a[i] * k

  2. 表是上一个线段的结尾, 分隔符数量下界是\(lowerBound = \lceil \frac{a[i]}{k} \rceil - 1\), 上界 $upperBound $ 是 \(a[i] * k + (k - Dp[i - 1][j ~ xor ~ 1])\)

    最后判断\(dp[n][0] \leq k || dp[n][1] \leq k\)

Summary

​ 刚开始设状态\(dp[i][j][l]\) 表示dp到ith段,段的最后颜色为j,这样的颜色在这一段的最后一部分有l长是否有解。 其实这样是不对的,算方案数判断是否可行的套路只适用于一些容斥数学题(eg. Mobius), 所以就多上一维的冗余信息。

​ 问题的模型是: 我们有n个段,段之间首尾相连,要求段中间的连续的隔板与球不超过k个。求是否有解。这样,我们不关心内部的排列方式, 并且内部排列不同不会影响下一段。这样的话我们可以直接考虑外部限制的情况下,钦定一种内部可行的方式。 而钦定就是对简单贪心的考察。

​ 因为上一段的影响对下一段越小,对解的限制也就越小(越容易出解),所以可以直接贪心。

​ 先考虑公式,将无关的公式看做挡板,表看作球。然后直接尽量容纳表即可。

Code

#include<bits/stdc++.h>
using std :: min;
#define rep(i, a, b) for(int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
#define drep(i, a, b) for(int i = (a), i##_end_ = (b); i >= i##_end_; --i)
#define clar(a, b) memset((a), (b), sizeof(a))
#define debug(...) fprintf(stderr, __VA_ARGS__)
typedef long long LL;
typedef long double LD;
int read() {
char ch = getchar();
int x = 0, flag = 1;
for (;!isdigit(ch); ch = getchar()) if (ch == '-') flag *= -1;
for (;isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
return x * flag;
}
void write(int x) {
if (x < 0) putchar('-'), x = -x;
if (x >= 10) write(x / 10);
putchar(x % 10 + 48);
} const int Maxn = 3e5 + 9;
static int dp[Maxn][2], n;
static int x[Maxn], y[Maxn], k; void init() {
n = read(), k = read();
rep (i, 1, n) x[i] = read();
rep (i, 1, n) y[i] = read();
} int getCalc(int preVal, int preSeparator, int nowVal, int nowSeparator) {
int res = 0x3f3f3f3f;
if (preVal < 0x3f3f3f3f) {
LL lowerBound = ceil((1ll * preVal + nowVal) * 1. / k) - 1;
if (nowSeparator < lowerBound) res = min(res, 0x3f3f3f3f);
else if (nowSeparator > 1ll * nowVal * k) res = min(res, 0x3f3f3f3f);
else if (nowSeparator > lowerBound) res = min(res, 1);
else res = min(1ll * res, (1ll * preVal + nowVal) % k ? (1ll * preVal + nowVal) % k : k);
} if (preSeparator < 0x3f3f3f3f) {
LL lowerBound = ceil(nowVal * 1. / k) - 1;
if (nowSeparator < lowerBound) res = min(res, 0x3f3f3f3f);
else if (nowSeparator > 1ll * (nowVal - 1) * k + (k - preSeparator)) res = min(res, 0x3f3f3f3f);
else if (nowSeparator > lowerBound) res = min(res, 1);
else res = min(1ll * res, (1ll * nowVal) % k ? (1ll * nowVal) % k : k);
}
return res;
} void solve() {
dp[0][0] = 0; dp[0][1] = 0; rep (i, 1, n) {
dp[i][0] = getCalc(dp[i - 1][0], dp[i - 1][1], x[i], y[i]);
dp[i][1] = getCalc(dp[i - 1][1], dp[i - 1][0], y[i], x[i]);
} puts(dp[n][0] <= k || dp[n][1] <= k ? "YES" : "NO");
} int main() { init();
solve(); #ifdef Qrsikno
debug("\nRunning time: %.3lf(s)\n", clock() * 1.0 / CLOCKS_PER_SEC);
#endif
return 0;
}

[CF1076F] Summer Practice Report的更多相关文章

  1. Codeforces 1076F Summer Practice Report dp

    Summer Practice Report dp[ i ][ 0 ]表示放完前 i 页, 第 i 页最后一段是 0, 0个数的最小值. dp[ i ][ 1 ]表示放完前 i 页, 第 i 页最后一 ...

  2. Codeforces1076F. Summer Practice Report(贪心+动态规划)

    题目链接:传送门 题目: F. Summer Practice Report time limit per test seconds memory limit per test megabytes i ...

  3. Educational Codeforces Round 54 (Rated for Div. 2) Solution

    A - Minimizing the String solved 题意:给出一个字符串,可以移掉最多一个字符,在所有可能性中选取一个字典序最小的. 思路:显然,一定可以移掉一个字符,如果移掉的字符的后 ...

  4. Codeforces Educational Codeforces Round 54 题解

    题目链接:https://codeforc.es/contest/1076 A. Minimizing the String 题意:给出一个字符串,最多删掉一个字母,输出操作后字典序最小的字符串. 题 ...

  5. BA Practice Lead Handbook 1 - Why Is Business Analysis Taking The World By Storm?

    The articles in this series are focused on individual Business Analysts and their managers. https:// ...

  6. Pramp mock interview (4th practice): Matrix Spiral Print

    March 16, 2016 Problem statement:Given a 2D array (matrix) named M, print all items of M in a spiral ...

  7. Atitit 数据存储视图的最佳实际best practice attilax总结

    Atitit 数据存储视图的最佳实际best practice attilax总结 1.1. 视图优点:可读性的提升1 1.2. 结论  本着可读性优先于性能的原则,面向人类编程优先于面向机器编程,应 ...

  8. 2.ASP.NET MVC 中使用Crystal Report水晶报表

    上一篇,介绍了怎么导出Excel文件,这篇文章介绍在ASP.NET MVC中使用水晶报表. 项目源码下载:https://github.com/caofangsheng93/CrystalReport ...

  9. Monthly Income Report – August 2016

    原文链接:https://marcoschwartz.com/monthly-income-report-august-2016/ Every month, I publish a report of ...

随机推荐

  1. webx启动流程

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvTFRpYW5jaGFv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  2. JAVA_如何复制项目

    如何复制一个项目:复制这个项目,直接粘贴为一个新项目   注意复制完了之后一定要改一下Web Context-root   然后重新部署(注意Servers的Tomcat会变成当前项目,还要注意他的L ...

  3. Android自己定义之TextView跑马灯的监听

    TextView都有跑马灯的效果,假设说让你去监听跑马灯效果的运行.我认为这个需求有点二了.可是也要实现. 思路: 1.自己定义View  继承TextView   这样的方法过于麻烦,仅仅是监听一个 ...

  4. 使用literal语法格式化字符串

    支持arm64之后,格式化字符串的时候会遇到一些问题,主要与NSInteger的定义有关: #if __LP64__ || (TARGET_OS_EMBEDDED && !TARGET ...

  5. 项目实战之玩转div+css制作自己定义形状

    项目需求 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/diss ...

  6. udhcp源码详解(三)上 之配置信息的读取

    上节介绍了存储管理配置信息的结构体struct server_config_t,该结构体贯穿整个server端程序的运行. 在dhcpd.c里的用该结构体定义个一个全局的变量: struct serv ...

  7. IO获取指定目录及其目录下子目录

    一.需求:获取指定目录下,指定扩展名的文件(包含子目录中的) 二.需要用到的方法 1.FilenameFilter :返回抽象路径名的定义中表示此抽象路径名的目录中的文件的数组.  filter.ac ...

  8. 如何使用jQuery向asp.net Mvc传递复杂json数据

    jQuery提供的ajax方法能很方便的实现客户端与服务器的异步交互,在asp.net mvc 框架使用jQuery能很方便地异步获取提交数据,给用户提供更好的体验! 调用jQuery的ajax方法时 ...

  9. Vi/Vim查找替换使用方法【转】

    原文地址:http://wzgyantai.blogbus.com/logs/28117977.html vi/vim 中可以使用 :s 命令来替换字符串.该命令有很多种不同细节使用方法,可以实现复杂 ...

  10. [思考]我们应该怎样建设企业IT

    从人员架构上来看,要不要企业自己的IT团队?如果要,应该有什么样的架构?运维,开发,管理,项目? 从是否外包角度看,要不要外包?如果外包,如何建立外包流程? 从业务角度看,企业IT的发展应该是围绕业务 ...