摘要: 本文主要介绍了hbase对数据压缩,编码的支持,以及云hbase在社区基础上对数据压缩率和访问速度上了进行的改进。

前言

你可曾遇到这种需求,只有几百qps的冷数据缓存,却因为存储水位要浪费几十台服务器?你可曾遇到这种需求,几百G的表,必须纯cache命中,性能才能满足业务需求?你可曾遇到,几十M的小表,由于qps过高,必须不停的split,balance,利用多台服务器来抗热点? 
面对繁杂的场景,Ali-HBase团队一直致力于为业务提供更多的选择和更低的成本。本文主要介绍了hbase目前两种提高压缩率的主要方法:压缩和DataBlockEncoding。

无损压缩:更小,更快,更省资源

通用压缩作为数据库解决存储的重要手段,通常数据库都存在数据块的概念,针对每个块做压缩和解压。块越大,压缩率越高,scan throughput增加;块越小,随机读IO压力较小,读latency越小。作为一种Tradeoff,线上hbase通常采用64K块大小,在cache中不做压缩,仅在落盘和读盘时做压缩和解压操作。

开源hbase通常使用的LZO压缩或者Snappy压缩。这两种压缩的共同特点是都追求较高的压缩解压速度,并实现合理的数据压缩率。然而,随着业务的快速增涨,越来越多的业务因为因为存储水位问题而扩容。hbase针对这一情况,采用了基于跨集群分区恢复技术的副本数优化、机型升级等方法,但依然无法满足存储量的快速膨胀,因此我们一直致力于寻找压缩更高的压缩方式。

新压缩(zstd、lz4)上线

Zstandard(缩写为Zstd)是一种新的无损压缩算法,旨在提供快速压缩,并实现高压缩比。它既不像LZMA和ZPAQ那样追求尽可能高的压缩比,也不像LZ4那样追求极致的压缩速度。这种算法的压缩速度超过200MB/s, 解压速度超过400MB/s(实验室数据),基本可以满足目前hbase对吞吐量的需求。经验证,Zstd的数据压缩率相对于Lzo基本可以提高25%-30%,对于存储型业务,这就意味着三分之一到四分之一的的成本减少。

而在另一种情况下,部分表存储量较小,但qps大,对rt要求极高。针对这种场景,我们引入了lz4压缩,其解压速度在部分场景下可以达到lzo的两倍以上。一旦读操作落盘需要解压缩,lz4解压的rt和cpu开销都明显小于lzo压缩。

我们先通过一张图片直观的展示各种压缩算法的性能: 

以线上几种典型数据场景为例,看看几种压缩的实际压缩率和单核解压速度(以下数据均来自于实际应用)

业务类型 无压缩表大小 LZO(压缩率/解压速度MB/s) ZSTD(压缩率/解压速度MB/s) LZ4(压缩率/解压速度MB/s)
监控类 419.75T 5.82/372 13.09/256 5.19/463.8
日志类 77.26T 4.11/333 6.0/287 4.16/ 496.1
风控类 147.83T 4.29/297.7 5.93/270 4.19/441.38
消费类 108.04T 5.93/316.8 10.51/288.3 5.55/520.3

目前,2017年双11,ZSTD已经在线上全面铺开,已累计优化存储数PB。LZ4也已经在部分读要求较高业务上线。 
下图为某监控类应用zstd压缩算法后,集群整体存储量的下降情况。数据量由100+T减少到75T。

编码技术:针对结构化数据的即查即解压

hbase作为一种schema free的数据库,相当于传统的关系型数据库更加灵活,用户无需设计好表的结构,也可以在同一张表内写入不同schema的数据。然而,由于缺少数据结构的支持,hbase需要很多额外的数据结构来标注长度信息,且无法针对不同的数据类型采用不同的压缩方式。针对这一问题,hbase提出了编码功能,用来降低存储开销。由于编码对cpu开销较小,且效果较好,通常cache中也会开启编码功能。

旧DIFF Encoding介绍

hbase很早就支持了DataBlockEncoding,也就是是通过减少hbase keyvalue中重复的部分来压缩数据。 以线上最常见的DIFF算法为例,某kv压缩之后的结果:

  • 一个字节的flag(这个flag的作用后面解释)
  • 如果和上个KV的键长不一样,则写入1~5个字节的长度
  • 如果和上个KV的值长不一样,则写入1~5个字节的长度
  • 记录和上个KV键相同的前缀长度,1~5个字节
  • 非前缀部分的row key
  • 如果是第一条KV,写入列族名
  • 非前缀部分的的列名
  • 写入1~8字节的timestamp或者与上个KV的timestamp的差(是原值还是写与上个KV的差,取决于哪个字节更小)
  • 如果和上个KV的type不一样,则写入1字节的type(Put,Delete)
  • Value内容

那么在解压缩时,怎么判断和上个KV的键长是否一样,值长是否一样,写入的时间戳究竟是是原值还是差值呢?这些都是通过最早写入的1个字节的flag来实现的, 
这个字节中的8位bit,含义是:

  • 第0位,如果为1,键长与上个kv相等
  • 第1位,如果为1,值长与上个kv相等
  • 第2位,如果为1,type与上个kv一样
  • 第3位,如果为1,则写入的timestamp是差值,否则为原值
  • 第456位,这3位组合起来的值(能表示0~7),表示写入的时间戳的长度
  • 第7位,如果为1,表示写入的timestamp差值为负数,取了绝对值。

DIFF 编码之后,对某个文件的seek包含以下两步:

  1. 通过index key找到对应的datablock
  2. 从第一个完整KV开始,顺序查找,不断decode下一个kv,直到找到目标kv为止。

DIFF encoding对小kv场景使用效果较好,可以减少2-5倍的数据量。

新Indexable Delta Encoding上线

从性能角度考虑,hbase通常需要将Meta信息装载进block cache。如果将block大小较小,Meta信息较多,会出现Meta无法完全装入Cache的情况, 性能下降。如果block大小较大,DIFF Encoding顺序查询的性能会成为随机读的性能瓶颈。针对这一情况,我们开发了Indexable Delta Encoding,在block内部也可以通过索引进行快速查询,seek性能有了较大提高。Indexable Delta Encoding原理如图所示:

在通过BlockIndex找到对应的数据块后,我们从数据块末尾找到每个完整KV的offset,并利用二分查找快速定位到符合查询条件的完整kv,再顺序decode每一个Diff kv,直到找到目标kv位置。

通过Indexable Delta Encoding, HFile的随机seek性能相对于使用之前翻了一倍,以64K block为例,在全cache命中的随机Get场景下,相对于Diff encoding rt下降50%,但存储开销仅仅提高3-5%。Indexable Delta Encoding目前已在线上多个场景应用,经受了双十一的考验,整体平均读rt减少10%-15%。

 

云端使用

阿里HBase目前已经在阿里云提供商业化服务,任何有需求的用户都可以在阿里云端使用深入改进的、一站式的HBase服务。云HBase版本与自建HBase相比在运维、可靠性、性能、稳定性、安全、成本等方面均有很多的改进,更多内容欢迎大家关注 https://www.aliyun.com/product/hbase

转自:https://yq.aliyun.com/articles/277084


交流

如果大家对HBase有兴趣,致力于使用HBase解决实际的问题,欢迎加入Hbase技术社区群交流:

微信HBase技术社区群,假如微信群加不了,可以加秘书微信: SH_425 ,然后邀请您。

​  钉钉HBase技术社区群

HBase数据压缩编码探索的更多相关文章

  1. BigData NoSQL —— ApsaraDB HBase数据存储与分析平台概览

    一.引言 时间到了2019年,数据库也发展到了一个新的拐点,有三个明显的趋势: 越来越多的数据库会做云原生(CloudNative),会不断利用新的硬件及云本身的优势打造CloudNative数据库, ...

  2. HBase 数据读写流程

    HBase 数据读写流程 2016-10-18 杜亦舒 读数据 HBase的表是按行拆分为一个个 region 块儿,这些块儿被放置在各个 regionserver 中 假设现在想在用户表中获取 ro ...

  3. Hive 实现HBase 数据批量插入

    HBase 数据的插入可以使用Java API 来写Java 程序逐条倒入,但是不是很方便.利用Hive自带的一个Jar包,可以建立Hive和HBase的映射关系 利用Hive 的insert可以将批 ...

  4. HBase数据导出到HDFS

    一.目的 把hbase中某张表的数据导出到hdfs上一份. 实现方式这里介绍两种:一种是自己写mr程序来完成,一种是使用hbase提供的类来完成. 二.自定义mr程序将hbase数据导出到hdfs上 ...

  5. HBase 学习之一 <<HBase使用客户端API动态创建Hbase数据表并在Hbase下导出执行>>

    HBase使用客户端API动态创建Hbase数据表并在Hbase下导出执行                       ----首先感谢网络能够给我提供一个开放的学习平台,如果没有网上的技术爱好者提供 ...

  6. 怎样将关系型数据表转换至hbase数据表

    首先须要把关系型数据库的数据表的数据添加由 "纵向延伸",转变为HBase数据表的"横向延伸" 一.Hbase的存储结构 a)      HBase以表(HTa ...

  7. HBase数据存储格式

    好的数据结构,对于检索数据,插入数据的效率就会很高. 常见的数据结构 B+树 根节点和枝节点非常easy,分别记录每一个叶子节点的最小值,并用一个指针指向叶子节点.  叶子节点里每一个键值都指向真正的 ...

  8. HBase数据同步ElasticSearch该程序

    ElasticSearch的River机械 ElasticSearch本身就提供了River机械,对于同步数据. 在这里,现在能找到的官方推荐River: http://www.elasticsear ...

  9. HBase数据备份及恢复(导入导出)的常用方法

    一.说明 随着HBase在重要的商业系统中应用的大量增加,许多企业需要通过对它们的HBase集群建立健壮的备份和故障恢复机制来保证它们的企业(数据)资产.备份Hbase时的难点是其待备份的数据集可能非 ...

随机推荐

  1. LINQ-查询表达式基础

    一.LINQ查询的数据源 从应用程序的角度来看,原始源数据的特定类型和结构并不重要. 应用程序始终将源数据视为 IEnumerable<T> 或 IQueryable<T> 集 ...

  2. oracle11g rac 个性归档模式

    关闭数据库并将一节点启动到mount状态 [root@QSZAAS-XYORC02 ~]# su - grid[grid@QSZAAS-XYORC02 ~]$ srvctl stop database ...

  3. Python之Regular Expressions(正则表达式)

    在编写处理字符串的程序或网页时,经常会有查找符合某些复杂规则的字符串的需要.正则表达式就是用于描述这些规则的工具.换句话说,正则表达式就是记录文本规则的代码. 很可能你使用过Windows/Dos下用 ...

  4. 【Luogu】P1578奶牛浴场(DP,枚举)

    题目链接 枚举极大子矩形.详情请见本题题解:I_AM_HelloWord 代码如下 #include<cstdio> #include<cctype> #include< ...

  5. 高通android7.0刷机工具使用介绍

    刷机工具安装 1. 安装QPST.WIN.2.7 Installer-00448.3 2. 安装python2.7,并配置其环境变量 刷机方法 1.将编译后的刷机文件拷贝到如下目录:SC20_CE_p ...

  6. 【bzoj4568】【Scoi2016】幸运数字 (线性基+树上倍增)

    Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一 ...

  7. Scrapy学习-5-下载图片实例

    1. 在项目下创建一个images文件用于存放图片 2. 载图片相关模块 pip install pillow 3.修改配置文件,激活pipelines ITEM_PIPELINES = { 'Art ...

  8. Codeforces 667D World Tour【最短路+枚举】

    垃圾csdn,累感不爱! 题目链接: http://codeforces.com/contest/667/problem/D 题意: 在有向图中找到四个点,使得这些点之间的最短距离之和最大. 分析: ...

  9. git(二):一些简单入门命令

    一.创建仓储(版本库) 可以创建在空目录下创建git仓库,也可以在已有项目里创建git仓储. $ mkdir NewName //仓储名 $ cd Newname //进入到该仓储目录中 $ git ...

  10. Flink学习(一)

    Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为 ...