Subsequence Count

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 256000/256000 K (Java/Others)

Problem Description
Given a binary string S[1,...,N] (i.e. a sequence of 0's and 1's), and Q queries on the string.

There are two types of queries:

1. Flipping the bits (i.e., changing all 1 to 0 and 0 to 1) between l and r (inclusive).
2. Counting the number of distinct subsequences in the substring S[l,...,r].

 
Input
The first line contains an integer T, denoting the number of the test cases.

For each test, the first line contains two integers N and Q.

The second line contains the string S.

Then Q lines follow, each with three integers type, l and r, denoting the queries.

1≤T≤5

1≤N,Q≤105

S[i]∈{0,1},∀1≤i≤N

type∈{1,2}

1≤l≤r≤N

 
Output
For each query of type 2, output the answer mod (109+7) in one line.
 
Sample Input
2
4 4
1010
2 1 4
2 2 4
1 2 3
2 1 4
4 4
0000
1 1 2
1 2 3
1 3 4
2 1 4
 
Sample Output
11
6
8
10
 
题解:
  设定dp[i][0/1] 到第i个字符以0/1结尾的子序列方案
  若s[i] = =1 : dp[i][1] = dp[i-1][0] + dp[i-1][1] + 1;
        dp[i][0] = dp[i-1][0];
       若是s[i] == 0: dp[i][0] =  dp[i-1][0] + dp[i-1][1] + 1;
        dp[i][1] = dp[i-1][1];
  写成矩阵,用线段树维护一段连续矩阵乘积,有点卡常数
#include<bits/stdc++.h>
using namespace std;
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
typedef unsigned long long ULL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N=5e5+,M=1e6+,inf=; inline LL read(){
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} const LL mod = 1e9+;
char s[N]; struct Matix {
LL arr[][];
}E,F,again,EE;
inline Matix mul(Matix a,Matix b) {
Matix ans;
memset(ans.arr,,sizeof(ans.arr));
for(int i = ; i < ; i++) {
for(int j = ; j < ; j++) {
for(int k = ; k < ; k++)
ans.arr[i][j] += a.arr[i][k] * b.arr[k][j],ans.arr[i][j] %= mod;
}
}
return ans;
} Matix v[N * ],now,facE[N],facF[N];
int lazy[N * ],fi[N * ],se[N * ]; void change(int i) {
swap(v[i].arr[][],v[i].arr[][]);
swap(v[i].arr[][],v[i].arr[][]);
swap(v[i].arr[][],v[i].arr[][]);
swap(v[i].arr[][],v[i].arr[][]);
swap(v[i].arr[][],v[i].arr[][]);
swap(v[i].arr[][],v[i].arr[][]);
}
void push_down(int i,int ll,int rr) {
if(!lazy[i]) return;
lazy[ls] ^= ;
lazy[rs] ^= ;
change(ls);change(rs);
lazy[i] ^= ;
}
inline void push_up(int i,int ll,int rr) {
v[i] = mul(v[ls],v[rs]);
}
void build(int i,int ll,int rr) {
lazy[i] = ;
if(ll == rr) {
if(s[ll] == '') v[i] = E,fi[i] = ,se[i] = ;
else v[i] = F,fi[i] = ,se[i] = ;
return ;
}
build(ls,ll,mid);
build(rs,mid+,rr);
push_up(i,ll,rr);
}
inline void update(int i,int ll,int rr,int x,int y) {
push_down(i,ll,rr);
if(ll == x && rr == y) {
lazy[i] ^= ;
change(i);
return ;
}
if(y <= mid) update(ls,ll,mid,x,y);
else if(x > mid) update(rs,mid+,rr,x,y);
else update(ls,ll,mid,x,mid),update(rs,mid+,rr,mid+,y);
push_up(i,ll,rr);
}
inline Matix ask(int i,int ll,int rr,int x,int y) {
push_down(i,ll,rr);
if(ll == x && rr == y) {
return v[i];
}
if(y <= mid) return ask(ls,ll,mid,x,y);
else if(x > mid) return ask(rs,mid+,rr,x,y);
else return mul(ask(ls,ll,mid,x,mid),ask(rs,mid+,rr,mid+,y));
push_up(i,ll,rr);
} int main() {
EE.arr[][] = ,EE.arr[][] = ,EE.arr[][] = ; E.arr[][] = ;E.arr[][] = ;E.arr[][] = ;
E.arr[][] = ;E.arr[][] = ; F.arr[][] = ;F.arr[][] = ;F.arr[][] = ;
F.arr[][] = ;F.arr[][] = ; again.arr[][] = ; int T;
T = read();
while(T--) {
int n,Q;
n = read();
Q = read();
scanf("%s",s+);
build(,,n);
while(Q--) {
int op,l,r;
op = read();
l = read();
r = read();
if(op == )
update(,,n,l,r);
else {
now = mul(again,ask(,,n,l,r));
printf("%lld\n",(now.arr[][]+now.arr[][])%mod);
}
}
}
return ;
}
 

先考虑怎么算 s_1, s_2, \ldots, s_ns​1​​,s​2​​,…,s​n​​ 的答案。设 dp(i, 0/1)dp(i,0/1) 表示考虑到 s_is​i​​,以 0/10/1 结尾的串的数量。那么 dp(i, 0) =dp(i - 1, 0) + dp(i - 1, 1) + 1dp(i,0)=dp(i−1,0)+dp(i−1,1)+111 也同理。
那么假设在某个区间之前,dp(i, 0/1) = (x, y)dp(i,0/1)=(x,y) 的话,过了这段区间,就会变成 (ax + by + c, dx + ey + f)(ax+by+c,dx+ey+f) 的形式,只要用线段树维护这个线性变化就好了。

HDU 6155 Subsequence Count 线段树维护矩阵的更多相关文章

  1. HDU.6155.Subsequence Count(线段树 矩阵)

    题目链接 首先考虑询问[1,n]怎么做 设 f[i][0/1]表示[1,i]以0/1结尾的不同子序列个数 则 \(if(A[i]) f[i][1] = f[i-1][0] + f[i-1][1] + ...

  2. Codeforces 750E - New Year and Old Subsequence(线段树维护矩阵乘法,板子题)

    Codeforces 题目传送门 & 洛谷题目传送门 u1s1 我做这道 *2600 的动力是 wjz 出了道这个套路的题,而我连起码的思路都没有,wtcl/kk 首先考虑怎样对某个固定的串计 ...

  3. Subsequence Count 2017ccpc网络赛 1006 dp+线段树维护矩阵

    Problem Description Given a binary string S[1,...,N] (i.e. a sequence of 0's and 1's), and Q queries ...

  4. hdu 5068 线段树维护矩阵乘积

    http://acm.hdu.edu.cn/showproblem.php?pid=5068 题意给的略不清晰 m个询问:从i层去j层的方法数(求连段乘积)或者修改从x层y门和x+1层z门的状态反转( ...

  5. 线段树维护矩阵【CF718C】 Sasha and Array

    Description 有一个长为\(n\)的数列\(a_{1},a_{2}...a_{n}\),你需要对这个数列维护如下两种操作: \(1\space l \space r\space x\) 表示 ...

  6. CF718C Sasha and Array(线段树维护矩阵)

    题解 (不会矩阵加速的先去学矩阵加速) 反正我想不到线段树维护矩阵.我太菜了. 我们在线段树上维护一个区间的斐波那契的列矩阵的和. 然后询问时提取每个符合题意列矩阵的答案项(不是列矩阵存了两项吗,一个 ...

  7. Codeforces 1368H - Breadboard Capacity(最小割+线段树维护矩阵乘法)

    Easy version:Codeforces 题面传送门 & 洛谷题面传送门 Hard version:Codeforces 题面传送门 & 洛谷题面传送门 首先看到这种从某一种颜色 ...

  8. HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)

    题意 给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作--操作分两种翻转 \([l,r]\) 区间中的元素.求区间 \([l,r]\) 有多少个不同的子序列. \(1 \le ...

  9. HDU 6155 Subsequence Count(矩阵 + DP + 线段树)题解

    题意:01串,操作1:把l r区间的0变1,1变0:操作2:求出l r区间的子序列种数 思路:设DP[i][j]为到i为止以j结尾的种数,假设j为0,那么dp[i][0] = dp[i - 1][1] ...

随机推荐

  1. hdu 1907 尼姆博弈

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

  2. 在VS2017中编写Python程序

    最近开始了python的学习,在搭建完python环境之后,在选择IDE的时候陷入了困境,首先选择的是PyCharm但是用着还是不习惯,毕竟用VS开发了几年了,突然换软件总感觉有点不适应,就想到了强大 ...

  3. mysqli 封装

    <?php //header header('content-type:text/html;charset=UTF-8'); class DB { //定义属性 private $host;// ...

  4. 【bzoj4889】[Tjoi2017]不勤劳的图书管理员 树状数组+分块+二分

    题目描述(转自洛谷) 加里敦大学有个帝国图书馆,小豆是图书馆阅览室的一个书籍管理员.他的任务是把书排成有序的,所以无序的书让他产生厌烦,两本乱序的书会让小豆产生这两本书页数的和的厌烦度.现在有n本被打 ...

  5. 【Luogu】P2831愤怒的小鸟(手算抛物线+状压DP)

    题目链接 设f[s]表示二进制集合表示下的s集合都打掉用了多少小鸟. 预处理出lne[i][j]表示i.j确定的抛物线能打掉的小鸟集合. 于是就有f[s|lne[i][j]]=min(f[s|lne[ ...

  6. 算法复习——迭代加深搜索(骑士精神bzoj1085)

    题目: Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相 ...

  7. Spring-IOC源码解读3-依赖注入

    当容器已经载入了BeanDefinition的信息完成了初始化,我们继续分析依赖注入的原理,需要注意的是依赖注入是用户第一次向IOC容器获取Bean的时候发生的,这里有个例外,那就是如果用户在Bean ...

  8. Jetson TK1 一:调整屏幕分辨率

    先点击分辨率调整的那个对话框,就是1024×768之类的那个,选定一个分辨率,我选的是1366x768(16:9)的那个,然后连续按7下tab按键,然后回车,然后再点击弹出的选项右边一个就能保存了.

  9. GRYZY- #10. 财富

    财富(treasure) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK有n个小伙伴.每个小伙伴有一个身高hi. 这个游戏是这样的,LYK生活的环境是以身高 ...

  10. 2716 [Violet 3] 天使玩偶

    @(BZOJ)[CDQ分治] Sample Input 100 100 81 23 27 16 52 58 44 24 25 95 34 2 96 25 8 14 97 50 97 18 64 3 4 ...