kafka客户端发布record(消息)
kafka客户端发布record(消息)
到kafka集群。
新的生产者是线程安全的,在线程之间共享单个生产者实例,通常单例比多个实例要快。
一个简单的例子,使用producer发送一个有序的key/value(键值对),放到java的main
方法里就能直接运行,
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
for(int i = 0; i < 100; i++)
producer.send(new ProducerRecord<String, String>("my-topic", Integer.toString(i), Integer.toString(i)));
producer.close();
生产者的缓冲空间池保留尚未发送到服务器的消息,后台I/O线程负责将这些消息转换成请求发送到集群。如果使用后不关闭生产者,则会泄露这些资源。
send()
方法是异步的,添加消息到缓冲区等待发送,并立即返回。生产者将单个的消息批量在一起发送来提高效率。
ack
是判别请求是否为完整的条件(就是是判断是不是成功发送了)。我们指定了“all”将会阻塞消息,这种设置性能最低,但是是最可靠的。
retries
,如果请求失败,生产者会自动重试,我们指定是0次,如果启用重试,则会有重复消息的可能性。
producer
(生产者)缓存每个分区未发送消息。缓存的大小是通过 batch.size
配置指定的。值较大的话将会产生更大的批。并需要更多的内存(因为每个“活跃”的分区都有1个缓冲区)。
默认缓冲可立即发送,即遍缓冲空间还没有满,但是,如果你想减少请求的数量,可以设置linger.ms
大于0。这将指示生产者发送请求之前等待一段时间,希望更多的消息填补到未满的批中。这类似于TCP的算法,例如上面的代码段,可能100条消息在一个请求发送,因为我们设置了linger(逗留)时间为1毫秒,然后,如果我们没有填满缓冲区,这个设置将增加1毫秒的延迟请求以等待更多的消息。需要注意的是,在高负载下,相近的时间一般也会组成批,即使是 linger.ms=0
。在不处于高负载的情况下,如果设置比0大,以少量的延迟代价换取更少的,更有效的请求。
buffer.memory
控制生产者可用的缓存总量,如果消息发送速度比其传输到服务器的快,将会耗尽这个缓存空间。当缓存空间耗尽,其他发送调用将被阻塞,阻塞时间的阈值通过max.block.ms
设定,之后它将抛出一个TimeoutException。
key.serializer
和value.serializer
示例,将用户提供的key和value对象ProducerRecord转换成字节,你可以使用附带的ByteArraySerializaer或StringSerializer处理简单的string或byte类型。
send()
public Future<RecordMetadata> send(ProducerRecord<K,V> record,Callback callback)
异步发送一条消息到topic,并调用callback
(当发送已确认)。
send是异步的,并且一旦消息被保存在等待发送的消息缓存
中,此方法就立即返回。这样并行发送多条消息而不阻塞去等待每一条消息的响应。
发送的结果是一个RecordMetadata,它指定了消息发送的分区,分配的offset和消息的时间戳。如果topic使用的是CreateTime,则使用用户提供的时间戳或发送的时间(如果用户没有指定指定消息的时间戳)如果topic使用的是LogAppendTime,则追加消息时,时间戳是broker的本地时间。
由于send调用是异步的,它将为分配消息的此消息的RecordMetadata
返回一个Future。如果future调用get(),则将阻塞,直到相关请求完成并返回该消息的metadata,或抛出发送异常。
如果要模拟一个简单的阻塞调用,你可以调用get()
方法。
byte[] key = "key".getBytes();
byte[] value = "value".getBytes();
ProducerRecord<byte[],byte[]> record = new ProducerRecord<byte[],byte[]>("my-topic", key, value)
producer.send(record).get();
完全无阻塞的话,可以利用回调参数提供的请求完成时将调用的回调通知。
ProducerRecord<byte[],byte[]> record = new ProducerRecord<byte[],byte[]>("the-topic", key, value);
producer.send(myRecord,
new Callback() {
public void onCompletion(RecordMetadata metadata, Exception e) {
if(e != null)
e.printStackTrace();
System.out.println("The offset of the record we just sent is: " + metadata.offset());
}
});
发送到同一个分区的消息回调保证按一定的顺序执行,也就是说,在下面的例子中 callback1
保证执行 callback2
之前:
producer.send(new ProducerRecord<byte[],byte[]>(topic, partition, key1, value1), callback1);
producer.send(new ProducerRecord<byte[],byte[]>(topic, partition, key2, value2), callback2);
注意:callback一般在生产者的I/O线程中执行,所以是相当的快的,否则将延迟其他的线程的消息发送。如果你需要执行阻塞或计算昂贵(消耗)的回调,建议在callback主体中使用自己的Executor来并行处理。
kafka客户端发布record(消息)的更多相关文章
- Kafka(分布式发布-订阅消息系统)工作流程说明
Kafka系统架构Apache Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apache项目的一部分.Kafka是一种快速.可扩展的.设计内在就是分布式的,分区的和 ...
- 【.NET+MQTT】.NET6 环境下实现MQTT通信,以及服务端、客户端的双边消息订阅与发布的代码演示
前言: MQTT广泛应用于工业物联网.智能家居.各类智能制造或各类自动化场景等.MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,在很多受限的环境下,比如说机器与机器通信.机器与物联网通信等. ...
- kafka 基础知识梳理-kafka是一种高吞吐量的分布式发布订阅消息系统
一.kafka 简介 今社会各种应用系统诸如商业.社交.搜索.浏览等像信息工厂一样不断的生产出各种信息,在大数据时代,我们面临如下几个挑战: 如何收集这些巨大的信息 如何分析它 如何及时做到如上两点 ...
- Kafka是分布式发布-订阅消息系统
Kafka是分布式发布-订阅消息系统 https://www.biaodianfu.com/kafka.html Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apa ...
- 分布式发布订阅消息系统 Kafka 架构设计[转]
分布式发布订阅消息系统 Kafka 架构设计 转自:http://www.oschina.net/translate/kafka-design 我们为什么要搭建该系统 Kafka是一个消息系统,原本开 ...
- 分布式发布订阅消息系统Kafka
高吞吐量的分布式发布订阅消息系统Kafka--安装及测试 一.Kafka概述 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. 这种动作(网页浏览, ...
- 发布-订阅消息系统Kafka简介
转载请注明出处:http://www.cnblogs.com/BYRans/ Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写.Kafka是一种高吞吐量的分布式 ...
- Kafka — 高吞吐量的分布式发布订阅消息系统【转】
1.Kafka独特设计在什么地方?2.Kafka如何搭建及创建topic.发送消息.消费消息?3.如何书写Kafka程序?4.数据传输的事务定义有哪三种?5.Kafka判断一个节点是否活着有哪两个条件 ...
- Kafka logo分布式发布订阅消息系统 Kafka
分布式发布订阅消息系统 Kafka kafka是一种高吞吐量的分布式发布订阅消息系统,她有如下特性: 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳 ...
随机推荐
- BZOJ_1095_[ZJOI2007]Hide 捉迷藏_动态点分治+堆
BZOJ_1095_[ZJOI2007]Hide 捉迷藏_动态点分治+堆 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子 ...
- 「LuoguP1402」 酒店之王(最大流
题目描述 XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化.由于很多来住店的旅客有自己喜好的房间色调.阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有固定的q道不同的菜. ...
- C语言解释器的实现--存储结构(一)
目录: 1. 内存池 2. 栈 3. Hash表 1.内存池 在一些小的程序里,没什么必要添加内存管理模块在里面.但是对于比较复杂的代码,如果需要很多的内存操作,那么加入自己的内存管理是有必要的.至 ...
- 在WinDBG中查看调用栈的命令
命令 ========== k k命令显示的是一定数量的栈帧, 其中帧的数量是由.kframes命令来控制的, 默认值是256. kp 5 显示调用栈中前5个函数以及他们的参数. kb 5 显示调用栈 ...
- CSS:CSS 网络安全字体组合
ylbtech-CSS:CSS 网络安全字体组合 1.返回顶部 1. 常用的字体组合 font-family 属性应该使用若干种字体名称作为回退系统,以确保浏览器/操作系统之间的最大兼容性.如果浏览器 ...
- 【216】◀▶ IDL 字符串操作说明
参考:String Processing Routines —— 字符串处理函数 01 STRING 返回字符串. 02 STRCMP 比较字符串,一样返回1,不一样返回0,默认大小写敏感. ...
- 2 pyspark学习----基本操作
1 spark的python环境部署可以参照上面一篇哟.http://www.cnblogs.com/lanjianhappy/p/8705974.html 2 pyspark的基本操作. # cod ...
- Flutter实战视频-移动电商-18.首页_火爆专区后台接口调试
18.首页_火爆专区后台接口调试 楼层结束之后有个火爆专区.到地图有个上拉加载的效果 lib/config/service_url.dart 首先找到我们的接口配置文件,增加接口的配置 lib/ser ...
- [python]MS17-010自动化扫描脚本
一种是3gstudent分享的调用Nsa泄露的smbtouch-1.1.1.exe实现验证,另一种是参考巡风的poc.这里整合学习了下两种不同的方法. import os import fileinp ...
- c#重写 重载
重写:当一个子类继承一父类,而子类中的方法与父类中的方法的名称,参数个数.类型都完全一致时,就称子类中的这个方法重写了父类中的方法. 重写:通常,派生类继承基类的方法.因此,在调用对象继承方法的时候, ...