poj 1742 多重背包问题 dp算法
题意:硬币分别有 A1.....An种,每种各有C1......Cn个,问组成小于m的有多少种
思路:多重背包问题
dp[i][j]表示用前i种硬币组成j最多剩下多少个 dp=-1的表示凑不齐
dp[0][0]=0;
for(int i=0;i<n;i++)
for(int j=0;j<=m;j++)
{ if(dp[i][j]>=0) dp[i+1][j]=c[i]; //表示用前i种可以凑齐j元,自然就全部剩下了
else if(j<a[i]||dp[i+1][j-a[i]]<=0) dp[i+1][j]=-1; //表示没法凑
else dp[i+1][j]=dp[i+1][j-a[i]]-1; //表示用了i这种硬币
}
如何数组重用呢?
dp[j]表示前i种硬币(循环)凑成j元最多剩下
dp[0]=0;
for(int i=0;i<n;i++)
for(int j=0;j<=m);j++)
{if(dp[j]>=0) dp[j]=c[i];
else if(j<a[i]||dp[j-a[i]]<=0) dp[j]=-1;
else dp[j]=dp[j-a[i]]-1;}
解决问题的代码:
#include <iostream>
#include <cstdio>
#include <string.h>
using namespace std;
int a[];
int c[];
int dp[ + ];
int main()
{
int n,m;
while (scanf("%d%d", &n, &m) != EOF)
{
if (n == && m == ) break;
for (int i = ; i < n; i++)
scanf("%d", &a[i]);
for (int i = ; i < n; i++)
scanf("%d", &c[i]);
memset(dp, -, sizeof(dp));
dp[] = ;
for(int i=;i<n;i++)
for (int j = ; j <= m; j++)
{
if (dp[j] >= ) dp[j] = c[i];
else if (j < a[i] || dp[j - a[i]] <= ) dp[j] = -;
else dp[j] = dp[j - a[i]] - ;
}
int ans = ;
for (int i = ; i <= m; i++)
{
if (dp[i] >= ) ++ans;
}
printf("%d\n", ans);
}
return ;
}
poj 1742 多重背包问题 dp算法的更多相关文章
- poj 1742 Coins(dp之多重背包+多次优化)
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...
- [POJ 1742] Coins 【DP】
题目链接:POJ - 1742 题目大意 现有 n 种不同的硬币,每种的面值为 Vi ,数量为 Ni ,问使用这些硬币共能凑出 [1,m] 范围内的多少种面值. 题目分析 使用一种 O(nm) 的 D ...
- poj 1742 多重背包
题意:给出n种面值的硬币, 和这些硬币每一种的数量, 要求求出能组成的钱数(小于等于m) 思路:一开始直接用多重背包套上去超时了,然后就没辙了,然后参考网上的,说只需要判断是否能取到就行了,并不需要记 ...
- HDU 2844 Coins (多重背包问题DP)
题意:给定n种硬币,每种价值是a,数量是c,让你求不大于给定V的不同的价值数,就是说让你用这些硬币来组成多少种不同的价格,并且价格不大于V. 析:一看就应该知道是一个动态规划的背包问题,只不过是变形, ...
- Coins HDU - 2844 POJ - 1742
Coins HDU - 2844 POJ - 1742 多重背包可行性 当做一般多重背包,二进制优化 #include<cstdio> #include<cstring> in ...
- 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- poj 1742 Coins (动态规划,背包问题)
Coins Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 32977 Accepted: 11208 Descripti ...
- POJ 1742 (单调队列优化多重背包+混合背包)
(点击此处查看原题) 题意分析 给你n种不同价值的硬币,价值为val[1],val[2]...val[n],每种价值的硬币有num[1],num[2]...num[n]个,问使用这n种硬币可以凑齐[1 ...
- hdu 2844 poj 1742 Coins
hdu 2844 poj 1742 Coins 题目相同,但是时限不同,原本上面的多重背包我初始化为0,f[0] = 1;用位或进行优化,f[i]=1表示可以兑成i,0表示不能. 在poj上运行时间正 ...
随机推荐
- 4. 把一幅彩色图像的R、G、B分量单独显示。
#include <cv.h> #include <highgui.h> int main(void) { IplImage* oo = cvLoadImage(); IplI ...
- FloatHelper
function FloatHelper() { } FloatHelper.prototype.showFloater = function (Target, Title, Action, Acti ...
- 解决mysql本地数据库不能用ip访问的问题
[转]http://gone18611.blog.163.com/blog/static/1851943120104705244116/ MYSQL数据库缺省安装后,其默认用户名ROOT如果只能以&l ...
- 关闭mysql validate-password插件
mysql5.7 的validate-password对密码策略有限制,比如长度大小写,太麻烦,我习惯开发环境下为root,所以在开发环境关闭这个插件的话只需在/etc/my.cnf中添加valida ...
- 数据库操作----找了MySQL和SQL Sever两个的基础语句
这是MySQL的基本操作: 1 登入数据库:mysql -uroot -p+密码 (SQL Sever登入: osql -U 用户名 -P 密码) 显示已存在的数据库:show databases; ...
- fiddler设置只抓取某一域名请求
简单易懂~
- 创建XML的用法
注意:在实际开发中,注意createElement().createAttribute().createTextNode().appendchild()等方法的具体使用. // root根节点的属性数 ...
- SharpSvn操作 -- 获取Commit节点列表
/// <summary> /// 获取工作目录的所有节点,包括子目录 /// </summary> /// <param name="workingCopyD ...
- Java之栈空间和堆空间
1.变量的命名 (1)由字母,数字和下划线构成,首字母以字母或下划线开头 (2)变量的命名遵循见名知义 (3)Java变量命名建议不用中文 (4)变量名首字母建议不用大写字母开头 (5)用驼峰命名法命 ...
- [学习笔记] C++ 历年试题解析(一)--判断题
少说话.. 程序题链接:https://www.cnblogs.com/aoru45/p/9898691.html 14级试题---选择题 1. 引用在声明时必须对其初始化,以绑定某个已经存在的变量( ...