CSU-2173 Use FFT
CSU-2173 Use FFT
Description
Bobo computes the product P(x)⋅Q(x)=\(c_0 + c_1x + … + c_{n+m}x^{n + m}\) for two polynomials P(x)=\(a_0 + a_1x + … + a_nx^n\) and Q(x)=\(b_0 + b_1x + … + b_mx^m\). Find $ (c_L + c_{L + 1} + … + c_R) $ modulo ($10^9 $ + 7) for given L and R.
- 1 ≤ n, m ≤ 5 × \(10^5\)
- 0 ≤ L ≤ R ≤ n + m
- 0 ≤ \(a_i, b_i\) ≤ \(10^9\)
- Both the sum of n and the sum of m do not exceed \(10^6\).
Input
The input consists of several test cases and is terminated by end-of-file.
The first line of each test case contains four integers n, m, L, R.
The second line contains (n + 1) integers \(a_0, a_1, …, a_n\).
The third line contains (m + 1) integers \(b_0, b_1, …, b_m\).
Output
For each test case, print an integer which denotes the reuslt.
Sample Input
1 1 0 2
1 2
3 4
1 1 1 2
1 2
3 4
2 3 0 5
1 2 999999999
1 2 3 1000000000
Sample Output
21
18
5
题解
这题标题是Use FFT所以当然是用FFT做了(滑稽)
这题其实是个数学题+找规律题,借用一张图片
所以我们对b求前缀和,用a去乘,注意细节就好了
#include<bits/stdc++.h>
#define maxn 500050
#define p 1000000007
using namespace std;
typedef long long ll;
ll a[maxn], b[maxn];
ll pre[maxn * 2];
int main() {
int n, m, l, r;
while (scanf("%d%d%d%d", &n, &m, &l, &r) != EOF) {
for (int i = 1; i <= n + 1; i++) {
scanf("%lld", &a[i]);
}
for (int i = 1; i <= m + 1; i++) {
scanf("%lld", &b[i]);
pre[i] = (pre[i - 1] + b[i]) % p;
}
for (int i = m + 2; i <= r + 1; i++) {
pre[i] = pre[i - 1];
}
ll ans = 0;
for (int i = 1; i <= n + 1; i++) {
ans = (ans + a[i] * (pre[r + 1] - pre[l] + p) % p) % p;
if (l > 0) l--;
if (r >= 0) r--;
}
printf("%lld\n", (ans + p) % p);
}
return 0;
}
CSU-2173 Use FFT的更多相关文章
- 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)
对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...
- 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2978 Solved: 1523[Submit][Status][Di ...
- 为什么FFT时域补0后,经FFT变换就是频域进行内插?
应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...
- FFT NNT
算算劳资已经多久没学新算法了,又要重新开始学辣.直接扔板子,跑...话说FFT算法导论里讲的真不错,去看下就懂了. //FFT#include <cstdio> #include < ...
- CC countari & 分块+FFT
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...
- ECF R9(632E) & FFT
Description: 上一篇blog. Solution: 同样我们可以用fft来做...就像上次写的那道3-idoit一样,对a做k次卷积就好了. 同样有许多需要注意的地方:我们只是判断可行性, ...
- fft练习
数学相关一直都好弱啊>_< 窝这个月要补一补数学啦, 先从基础的fft补起吧! 现在做了 道. 窝的fft 模板 (bzoj 2179) #include <iostream> ...
- FFT时域与频域的关系,以及采样速率与采样点的影响
首先对于FFT来说,输入的信号是一个按一定采样频率获得的信号序列,而输出是每个采样点对应的频率的幅度(能量). 下面详细分析: 在FFT的输出数据中,第一个值是直流分量的振幅(这样对应周期有无穷的可能 ...
- 【玩转单片机系列002】 如何使用STM32提供的DSP库进行FFT
前些日子,因为需要在STM32F103系列处理器上,对采集的音频信号进行FFT,所以花了一些时间来研究如何高效并精确的在STM32F103系列处理器上实现FFT.在网上找了很多这方面的资料做实验并进行 ...
- FFT
void FFT(complex a[],int n,int fl){ ,j=n/;i<n;i++){ if (i<j) {complex t=a[i];a[i]=a[j];a[j]=t; ...
随机推荐
- HDU2612 BFS
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2612 , 一道比较简单的广搜(BFS)题目. 算法: 设置两个dist[][]数组,记录Y和M到几个K ...
- pat乙级1060
将数组排序后从大到小遍历,设置一个递增的变量t,当v[i] > t的时候,说明有t个数大于t,最后一个满足v[i] > t的t即为所求结果. #include <iostream&g ...
- linux 命令——6 rmdir(转)
今天学习一下linux中命令: rmdir命令.rmdir是常用的命令,该命令的功能是删除空目录,一个目录被删除之前必须是空的.(注意,rm - r dir命令可代替rmdir,但是有很大危险性.)删 ...
- windows剪切板暂存
其实最初是因为在项目中使用了html网页编辑器,通过ie的com组件和javascript通讯完成一些事情,其中有一个功能是插入表格,我们原本使用的range.pasteHTML(HTMLstr);根 ...
- JS中的Global对象
Global对象可以说是ECMAScript中最特别的一个对象了.因为不管你从什么角度上看,这个对象都是不存在的.ECMAScript中的Global对象在某种意义上是作为一个终极的“兜底儿对象”来定 ...
- 【转】IOS基础:深入理解Objective-c中@class的含义
objective-c中,当一个类使用到另一个类时,并且在类的头文件中需要创建被引用的指针时, 如下面代码: A.h文件 #import "B.h" @interface A : ...
- 2017.12.23 第二章 统一建模语言UML概述
第二章 统一建模语言UML概述 (1)为什么要建模 模型是某个事物的抽象,其目的是在构建这个事物之前先来理解它,因为模型忽略了那些非本质的细节,这样有利于更好的理解和表示事物: 在软件系统开发之前首先 ...
- react树状组件
最近在react项目中需要一个树状组件,但是又不想因为这个去引入一套UI组件,故自己封装了一个基于react的树状组件, 个人认为比较难得部分在于数据的处理,话不多说直接上代码: 下面是tree.js ...
- 使用U盘引导安装CentOS
一.制作linux引导盘 1. 格式化U盘:格式成FAT32格式 2. 安装syslinux https://www.kernel.org/pub/linux/utils/boot/syslinux/ ...
- C# 目录下的文件操作
运用DirectoryInfo类的对象我们可以轻松的实现对目录以及和目录中的文件相关的操作,假如你要获得某个目录F:\Pictures下的所有BMP文件,那么通过下面的代码就可以实现该功能. 上面的代 ...