POJ3735【矩阵快速幂】
逛了一圈。。。觉得这篇讲的比较清楚:传送门~
简要概括:
1、线性代数的知识,单位矩阵的利用;(如果不知道单位矩阵的,先去补习一下线代,做几题行列式就会了);
2、然后构造好矩阵以后,直接做M次乘积运算,然后利用一个[1, 0 , ... , 0 ]矩阵提取答案就好了,对,那个[1,0,..., 0 ] 就是获取答案的作用。
PS
以前的矩阵快速幂总是这样写的:先构造一个矩阵,然后跑一发矩阵快速幂,然后这个矩阵a乘以另一个矩阵b就会得出答案,而答案矩阵往往会包括前一个答案的值。所以自己就有点不知所措。【这里写自己的智障困惑。。】
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long LL; struct asd{
LL a[110][110];
};
int n; asd mul(asd a, asd b)
{
asd ans;
memset(ans.a,0,sizeof(ans.a));
for(int k=0;k<=n;k++)
for(int i=0;i<=n;i++)
if(a.a[i][k])
for(int j=0;j<=n;j++)
ans.a[i][j]+=a.a[i][k]*b.a[k][j]; return ans;
} asd quickmul(int g,asd x)
{
asd ans;
memset(ans.a,0,sizeof(ans.a));
for(int i=0;i<=n;i++)
ans.a[i][i]=1;
while(g)
{
if(g&1) ans=mul(ans,x);
x=mul(x,x);
g>>=1;
}
return ans;
} asd init(int k)
{
asd tmp;
memset(tmp.a,0,sizeof(tmp.a));
for(int i=0;i<=n;++i)
tmp.a[i][i]=1; char x[5];
int a,b;
while(k--)
{
scanf("%s",x);
if(x[0]=='g')
{
scanf("%d",&a);
tmp.a[0][a]++;
}
else if(x[0]=='s')
{
scanf("%d%d",&a,&b);
for(int i=0;i<=n;i++)
swap(tmp.a[i][a],tmp.a[i][b]);
}
else
{
scanf("%d",&a);
for(int i=0;i<=n;i++)
tmp.a[i][a]=0;
}
}
return tmp;
} int main()
{
int m,k;
asd ans,tmp;
while(~scanf("%d%d%d",&n,&m,&k))
{
if((!n)&&(!m)&&(!k))
break;
tmp=init(k);
ans=quickmul(m,tmp);
memset(tmp.a,0,sizeof(tmp.a));
tmp.a[0][0]=1;
ans=mul(tmp,ans);
for(int i=1;i<=n;i++)
{
if(i!=1) printf(" ");
printf("%lld",ans.a[0][i]);
}
puts("");
}
return 0;
}
POJ3735【矩阵快速幂】的更多相关文章
- Training little cats(poj3735,矩阵快速幂)
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10737 Accepted: ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- hdu2604(递推,矩阵快速幂)
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
随机推荐
- 多媒体开发之---h.264 SPS PPS解析源代码,C实现一以及nal分析器
http://blog.csdn.net/mantis_1984/article/details/9465909 http://blog.csdn.net/arau_sh/article/detail ...
- EEPlat 主子表和对象引用配置实例
本次实例以常见的订单维护,来介绍下平台内类似主子表结构的配置方法. 订单包含订单头和订单明细.订单头包含简单信息:订单编号.订单状态.客户. 交付日期.订单日期.备注等.订单明细包含:订单产品.定单数 ...
- 多线程(C++)临界区Critical Sections
一 .Critical Sections(功能与Mutex相同,保证某一时刻只有一个线程能够访问共享资源,但是不是内核对象,所以访问速度比Mutex快,但是没有等待超时的功能,所以有可能导致死锁,使用 ...
- oracle指定访问某表或某视图
在oracle中,想创建一个账号,然后只能只读地访问指定的表,怎么搞? 一.为特定的表创建视图 创建视图的时候还可以加上过滤条件,连访问哪些数据都可以指定. create or replace vie ...
- iOS开发---- 开发错误汇总及解决方法
本文转载至 http://blog.csdn.net/shenjx1225/article/details/8561695 一.今天调试程序的时候,出现了一个崩溃,信息如下: 2013-02-01 0 ...
- Carriage-Return Line-Feed
Git 提交时报错warning: LF will be replaced by CRLF in - CSDN博客 https://blog.csdn.net/yan_less/article/det ...
- DuiLib笔记之CDuiString的bug
在C/C++中,当使用==比较两个对象时,推荐的风格是将常量置前 例如 if (0 == variable) { ... } 但在DuiLib中,CDuiString存在一个bug:在用==进行比较时 ...
- Linux就该这么学--命令集合3(文本文件编辑命令)
1.cat命令查看纯文本文件(较短):(cat [选项] [文件]) cat -n showpath.sh 附录: -n 显示行号 -b 显示行号(不包括空行) -A 显示出“不可见”的符号,如空格, ...
- AndroidPageObjectTest_Chained.java
以下代码使用ApiDemos-debug.apk进行测试 //这个脚本用于演示PageFactory的功能:链式注解@AndroidFindBys.@IOSFindBys.具体用法参考页面类的代码. ...
- failed to load AppCompat ActionBar with unkNown error
解决办法: 在AndroidManifest.xml文件中找到 全局样式文件 Theme,如图: 进入到这个文件,在前面增加 "Base".,如图: