请结合源码阅读,本文只是总结一下,源码里有详细的注释。基于:go1.12.4

http.Client 表示一个http client端,用来处理HTTP相关的工作,例如cookies, redirect, timeout等工作,其内部包含一个Transport,为RountTripper interface类型。

type Client struct {
// Transport specifies the mechanism by which individual
// HTTP requests are made.
// If nil, DefaultTransport is used.
Transport RoundTripper
...
}

RountTripper定义了执行一次http请求时,如何根据reueqest返回response,它必须是支持并发的一个结构体,允许多个groutine同时调用:

type RoundTripper interface {
RoundTrip(*Request) (*Response, error)
}

如果不给http.Client显式指定RoundTripper则会创建一个默认的DefaultTransport。Transport是用来保存多个请求过程中的一些状态,用来缓存tcp连接,客户可以重用这些连接,防止每次新建,transport需要同时支持http, https, 并且需要http/1.1, http/2。DefaultTransport默认就支持http/2.0,如果需要显式指定则调用ConfigureTransport

transport必须实现interface中的roundTrip方法:


// roundTrip implements a RoundTripper over HTTP.
func (t *Transport) roundTrip(req *Request) (*Response, error) {
...
for {
select {
case <-ctx.Done():
req.closeBody()
return nil, ctx.Err()
default:
} // treq gets modified by roundTrip, so we need to recreate for each retry.
treq := &transportRequest{Request: req, trace: trace}
cm, err := t.connectMethodForRequest(treq)
if err != nil {
req.closeBody()
return nil, err
} // 获取一个连接
// Get the cached or newly-created connection to either the
// host (for http or https), the http proxy, or the http proxy
// pre-CONNECTed to https server. In any case, we'll be ready
// to send it requests.
pconn, err := t.getConn(treq, cm)
if err != nil {
t.setReqCanceler(req, nil)
req.closeBody()
return nil, err
} var resp *Response
if pconn.alt != nil {
// HTTP/2 path.
t.decHostConnCount(cm.key()) // don't count cached http2 conns toward conns per host
t.setReqCanceler(req, nil) // not cancelable with CancelRequest
resp, err = pconn.alt.RoundTrip(req)
} else {
// 开始调用该pconn的rountTrip方法取得response
resp, err = pconn.roundTrip(treq)
}
if err == nil {
return resp, nil
}
if !pconn.shouldRetryRequest(req, err) {
// Issue 16465: return underlying net.Conn.Read error from peek,
// as we've historically done.
if e, ok := err.(transportReadFromServerError); ok {
err = e.err
}
return nil, err
}
testHookRoundTripRetried() // Rewind the body if we're able to.
if req.GetBody != nil {
newReq := *req
var err error
newReq.Body, err = req.GetBody()
if err != nil {
return nil, err
}
req = &newReq
}
}
}

roundTrip其实就是通过getConn用于获取一个连接persisConn并调用其roundTrip方法返回repsonse。其中getConn的实现如下:

// getConn dials and creates a new persistConn to the target as
// specified in the connectMethod. This includes doing a proxy CONNECT
// and/or setting up TLS. If this doesn't return an error, the persistConn
// is ready to write requests to.
func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (*persistConn, error) {
req := treq.Request
trace := treq.trace
ctx := req.Context()
if trace != nil && trace.GetConn != nil {
trace.GetConn(cm.addr())
}
// 首先从idleConn空闲连接池中尝试获取闲置的连接
if pc, idleSince := t.getIdleConn(cm); pc != nil {
if trace != nil && trace.GotConn != nil {
trace.GotConn(pc.gotIdleConnTrace(idleSince))
}
// set request canceler to some non-nil function so we
// can detect whether it was cleared between now and when
// we enter roundTrip
t.setReqCanceler(req, func(error) {})
return pc, nil
} type dialRes struct {
pc *persistConn
err error
}
dialc := make(chan dialRes) // 连接创建完成之后会从该管道异步通知
cmKey := cm.key() // 标识一个连接的key // Copy these hooks so we don't race on the postPendingDial in
// the goroutine we launch. Issue 11136.
testHookPrePendingDial := testHookPrePendingDial
testHookPostPendingDial := testHookPostPendingDial handlePendingDial := func() {
testHookPrePendingDial()
go func() {
if v := <-dialc; v.err == nil {
t.putOrCloseIdleConn(v.pc)
} else {
t.decHostConnCount(cmKey)
}
testHookPostPendingDial()
}()
} cancelc := make(chan error, 1)
t.setReqCanceler(req, func(err error) { cancelc <- err }) // 一边增加记录的连接数,一边尝试获取连接,一边监听取消事件
if t.MaxConnsPerHost > 0 {
select {
case <-t.incHostConnCount(cmKey):
// count below conn per host limit; proceed
case pc := <-t.getIdleConnCh(cm):
if trace != nil && trace.GotConn != nil {
trace.GotConn(httptrace.GotConnInfo{Conn: pc.conn, Reused: pc.isReused()})
}
return pc, nil
case <-req.Cancel:
return nil, errRequestCanceledConn
case <-req.Context().Done():
return nil, req.Context().Err()
case err := <-cancelc:
if err == errRequestCanceled {
err = errRequestCanceledConn
}
return nil, err
}
} // 异步发起连接操作
go func() {
pc, err := t.dialConn(ctx, cm)
dialc <- dialRes{pc, err}
}() // 监听多个事件来源
// 1. 新创建成功
// 2. 其它连接结束,闲置连接池中有连接可以复用
// 3. 连接被取消
// 第一种情况和第二种情况谁先成功就直接返回
// 除了新建连接成功,其它所有情况都需要处理调用`handlePendingDial`,该函数决定新建连接返回后该如何处理
idleConnCh := t.getIdleConnCh(cm)
select {
case v := <-dialc: // 如果新建连接结束后会从该channel发送过来
// Our dial finished.
if v.pc != nil {
if trace != nil && trace.GotConn != nil && v.pc.alt == nil {
trace.GotConn(httptrace.GotConnInfo{Conn: v.pc.conn})
}
return v.pc, nil
}
// Our dial failed. See why to return a nicer error
// value.
t.decHostConnCount(cmKey)
select {
case <-req.Cancel:
// It was an error due to cancelation, so prioritize that
// error value. (Issue 16049)
return nil, errRequestCanceledConn
case <-req.Context().Done():
return nil, req.Context().Err()
case err := <-cancelc:
if err == errRequestCanceled {
err = errRequestCanceledConn
}
return nil, err
default:
// It wasn't an error due to cancelation, so
// return the original error message:
return nil, v.err
}
case pc := <-idleConnCh: // 如果从空闲连接池中有了可用的连接,直接返回
// Another request finished first and its net.Conn
// became available before our dial. Or somebody
// else's dial that they didn't use.
// But our dial is still going, so give it away
// when it finishes:
handlePendingDial()
if trace != nil && trace.GotConn != nil {
trace.GotConn(httptrace.GotConnInfo{Conn: pc.conn, Reused: pc.isReused()})
}
return pc, nil
case <-req.Cancel:
handlePendingDial()
return nil, errRequestCanceledConn
case <-req.Context().Done():
handlePendingDial()
return nil, req.Context().Err()
case err := <-cancelc:
handlePendingDial()
if err == errRequestCanceled {
err = errRequestCanceledConn
}
return nil, err
}
}

getConn首先从空闲连接池中获取连接,如果没有,则新建连接。在新建过程中,如果连接池中有空闲连接则也复用空闲连接。

继续看一下dialConn是如何建立连接的:

func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (*persistConn, error) {
// 注意这里初始化的各种channle
pconn := &persistConn{
t: t,
cacheKey: cm.key(),
reqch: make(chan requestAndChan, 1), // 用于给readLoop发送request
writech: make(chan writeRequest, 1), // 用于给writeLoop发送request
closech: make(chan struct{}), // 当连接关闭是用于传递信息
writeErrCh: make(chan error, 1), // 由writeLoop返回给roundTrip错误信息
writeLoopDone: make(chan struct{}), // 当writeLoop结束的时候会关闭该channel
}
trace := httptrace.ContextClientTrace(ctx)
wrapErr := func(err error) error {
if cm.proxyURL != nil {
// Return a typed error, per Issue 16997
return &net.OpError{Op: "proxyconnect", Net: "tcp", Err: err}
}
return err
} conn, err := t.dial(ctx, "tcp", cm.addr())
if err != nil {
return nil, wrapErr(err)
}
pconn.conn = conn // 包装一个请求成另一个结构体,方便后续处理
if t.MaxConnsPerHost > 0 {
pconn.conn = &connCloseListener{Conn: pconn.conn, t: t, cmKey: pconn.cacheKey}
}
// 包装读写conn并开启读取和写入groutine
pconn.br = bufio.NewReader(pconn)
pconn.bw = bufio.NewWriter(persistConnWriter{pconn})
go pconn.readLoop()
go pconn.writeLoop()
return pconn, nil
}

可以看到首先调用dial函数,获取一个conn对象,然后封装为pconn的, 启动readLoop和wirteLoop后将该pconn返回。

以readLoop为例,看看是如何从一个pc中读取response的:

func (pc *persistConn) readLoop() {
// 默认是失败,如果失败则进行处理,移除该连接,使用defer语句表示在程序退出的时候执行,也就是说该groutine在正常情况下不会退出,是个死循环,通过channel与其它groutine通信,处理请求
closeErr := errReadLoopExiting // default value, if not changed below
defer func() {
pc.close(closeErr)
pc.t.removeIdleConn(pc)
}() // 尝试将该连接重新返回闲置连接池
tryPutIdleConn := func(trace *httptrace.ClientTrace) bool {
if err := pc.t.tryPutIdleConn(pc); err != nil {
closeErr = err
if trace != nil && trace.PutIdleConn != nil && err != errKeepAlivesDisabled {
trace.PutIdleConn(err)
}
return false
}
if trace != nil && trace.PutIdleConn != nil {
trace.PutIdleConn(nil)
}
return true
} // 用来保证先后次序,先归还连接再读取response.Body
// eofc is used to block caller goroutines reading from Response.Body
// at EOF until this goroutines has (potentially) added the connection
// back to the idle pool.
eofc := make(chan struct{})
defer close(eofc) // unblock reader on errors // Read this once, before loop starts. (to avoid races in tests)
testHookMu.Lock()
testHookReadLoopBeforeNextRead := testHookReadLoopBeforeNextRead
testHookMu.Unlock() alive := true
for alive {
pc.readLimit = pc.maxHeaderResponseSize()
_, err := pc.br.Peek(1) pc.mu.Lock()
if pc.numExpectedResponses == 0 {
pc.readLoopPeekFailLocked(err)
pc.mu.Unlock()
return
}
pc.mu.Unlock() // 获取一个新连接来处理
rc := <-pc.reqch
trace := httptrace.ContextClientTrace(rc.req.Context()) var resp *Response
if err == nil {
// 读取返回结果
resp, err = pc.readResponse(rc, trace)
} else {
err = transportReadFromServerError{err}
closeErr = err
} if err != nil {
if pc.readLimit <= 0 {
err = fmt.Errorf("net/http: server response headers exceeded %d bytes; aborted", pc.maxHeaderResponseSize())
} select {
case rc.ch <- responseAndError{err: err}:
case <-rc.callerGone:
return
}
return
}
pc.readLimit = maxInt64 // effictively no limit for response bodies pc.mu.Lock()
pc.numExpectedResponses--
pc.mu.Unlock() bodyWritable := resp.bodyIsWritable()
hasBody := rc.req.Method != "HEAD" && resp.ContentLength != 0 if resp.Close || rc.req.Close || resp.StatusCode <= 199 || bodyWritable {
// Don't do keep-alive on error if either party requested a close
// or we get an unexpected informational (1xx) response.
// StatusCode 100 is already handled above.
alive = false
} if !hasBody || bodyWritable {
pc.t.setReqCanceler(rc.req, nil) // Put the idle conn back into the pool before we send the response
// so if they process it quickly and make another request, they'll
// get this same conn. But we use the unbuffered channel 'rc'
// to guarantee that persistConn.roundTrip got out of its select
// potentially waiting for this persistConn to close.
// but after
alive = alive &&
!pc.sawEOF &&
pc.wroteRequest() &&
tryPutIdleConn(trace) if bodyWritable {
closeErr = errCallerOwnsConn
} select {
case rc.ch <- responseAndError{res: resp}:
case <-rc.callerGone:
return
} // Now that they've read from the unbuffered channel, they're safely
// out of the select that also waits on this goroutine to die, so
// we're allowed to exit now if needed (if alive is false)
testHookReadLoopBeforeNextRead()
continue
} // bodyEOFSignal实现了io.ReadCloser interface, 保证读取的时候,该response已经收到了eof
waitForBodyRead := make(chan bool, 2)
body := &bodyEOFSignal{
body: resp.Body,
earlyCloseFn: func() error {
waitForBodyRead <- false
<-eofc // will be closed by deferred call at the end of the function
return nil },
fn: func(err error) error {
isEOF := err == io.EOF
waitForBodyRead <- isEOF
if isEOF {
<-eofc // see comment above eofc declaration
} else if err != nil {
if cerr := pc.canceled(); cerr != nil {
return cerr
}
}
return err
},
} resp.Body = body
if rc.addedGzip && strings.EqualFold(resp.Header.Get("Content-Encoding"), "gzip") {
resp.Body = &gzipReader{body: body}
resp.Header.Del("Content-Encoding")
resp.Header.Del("Content-Length")
resp.ContentLength = -1
resp.Uncompressed = true
} select {
// 将分装好的repsponse发送回去
case rc.ch <- responseAndError{res: resp}:
case <-rc.callerGone:
return
} // Before looping back to the top of this function and peeking on
// the bufio.Reader, wait for the caller goroutine to finish
// reading the response body. (or for cancelation or death)
select {
case bodyEOF := <-waitForBodyRead:
pc.t.setReqCanceler(rc.req, nil) // before pc might return to idle pool
alive = alive &&
bodyEOF &&
!pc.sawEOF &&
pc.wroteRequest() &&
tryPutIdleConn(trace)
if bodyEOF {
eofc <- struct{}{} //前面所有检查完毕,通知对端开始读取
}
case <-rc.req.Cancel:
alive = false
pc.t.CancelRequest(rc.req)
case <-rc.req.Context().Done():
alive = false
pc.t.cancelRequest(rc.req, rc.req.Context().Err())
case <-pc.closech:
alive = false
} testHookReadLoopBeforeNextRead()
}
}

上面readLoop中从一个channel中读取出来需要处理的request, 然后读取readResponse并通过管道返回回去。那接受到的request是从哪个地方发送过来的呐?

回到最开始的Transport.roundTrip函数里,它先调用getConn返回一个pconn后然后调用pconn.roundTrip方法,就是在这里面发送的,我们看看:

func (pc *persistConn) roundTrip(req *transportRequest) (resp *Response, err error) {
testHookEnterRoundTrip()
if !pc.t.replaceReqCanceler(req.Request, pc.cancelRequest) {
pc.t.putOrCloseIdleConn(pc)
return nil, errRequestCanceled
}
pc.mu.Lock()
pc.numExpectedResponses++
headerFn := pc.mutateHeaderFunc
pc.mu.Unlock() if headerFn != nil {
headerFn(req.extraHeaders())
} ... var continueCh chan struct{}
if req.ProtoAtLeast(1, 1) && req.Body != nil && req.expectsContinue() {
continueCh = make(chan struct{}, 1)
} if pc.t.DisableKeepAlives && !req.wantsClose() {
req.extraHeaders().Set("Connection", "close")
} gone := make(chan struct{})
defer close(gone) defer func() {
if err != nil {
pc.t.setReqCanceler(req.Request, nil)
}
}() const debugRoundTrip = false // 通过writech发送该请求
// Write the request concurrently with waiting for a response,
// in case the server decides to reply before reading our full
// request body.
startBytesWritten := pc.nwrite
writeErrCh := make(chan error, 1)
pc.writech <- writeRequest{req, writeErrCh, continueCh} resc := make(chan responseAndError)
// 发送当前正在处理的请求给readLoop,readLoop中从channle中读取出该请求,进行readResponse
// 其中的requestAndChan.ch是response返回的channel
pc.reqch <- requestAndChan{
req: req.Request,
ch: resc,
addedGzip: requestedGzip,
continueCh: continueCh,
callerGone: gone,
} var respHeaderTimer <-chan time.Time
cancelChan := req.Request.Cancel
ctxDoneChan := req.Context().Done()
for {
testHookWaitResLoop()
select {
case err := <-writeErrCh: // writeLoop出现错误
if debugRoundTrip {
req.logf("writeErrCh resv: %T/%#v", err, err)
}
if err != nil {
pc.close(fmt.Errorf("write error: %v", err))
return nil, pc.mapRoundTripError(req, startBytesWritten, err)
}
if d := pc.t.ResponseHeaderTimeout; d > 0 {
if debugRoundTrip {
req.logf("starting timer for %v", d)
}
timer := time.NewTimer(d)
defer timer.Stop() // prevent leaks
respHeaderTimer = timer.C
}
case <-pc.closech:
if debugRoundTrip {
req.logf("closech recv: %T %#v", pc.closed, pc.closed)
}
return nil, pc.mapRoundTripError(req, startBytesWritten, pc.closed)
case <-respHeaderTimer:
if debugRoundTrip {
req.logf("timeout waiting for response headers.")
}
pc.close(errTimeout)
return nil, errTimeout
case re := <-resc: // readLoop会将读取的结果通过resc channel发送回来
if (re.res == nil) == (re.err == nil) {
panic(fmt.Sprintf("internal error: exactly one of res or err should be set; nil=%v", re.res == nil))
}
if debugRoundTrip {
req.logf("resc recv: %p, %T/%#v", re.res, re.err, re.err)
}
if re.err != nil {
return nil, pc.mapRoundTripError(req, startBytesWritten, re.err)
}
return re.res, nil
case <-cancelChan:
pc.t.CancelRequest(req.Request)
cancelChan = nil
case <-ctxDoneChan:
pc.t.cancelRequest(req.Request, req.Context().Err())
cancelChan = nil
ctxDoneChan = nil
}
}
}

该函数中会将request进行封装,然后分别通过channel发送给readLoop和writeLoop,并监听各个channel的事件,分别进行不同的处理。

整体流程走完之后,我们回顾一下两个比较重要的结构体:persistConnTransport的成员

// persistConn wraps a connection, usually a persistent one
// (but may be used for non-keep-alive requests as well)
type persistConn struct {
// alt optionally specifies the TLS NextProto RoundTripper.
// This is used for HTTP/2 today and future protocols later.
// If it's non-nil, the rest of the fields are unused.
alt RoundTripper t *Transport
cacheKey connectMethodKey // 当前连接对应的key, 也是idleConns map中的key
conn net.Conn // 被封装的conn对象
tlsState *tls.ConnectionState
br *bufio.Reader // from conn // bufio.Reader 对象,封装conn
bw *bufio.Writer // to conn // bufio.Writer 对象,封装conn
nwrite int64 // bytes written // 记录写入的长度
reqch chan requestAndChan // written by roundTrip; read by readLoop // rountTrip在创建一个请求的时候会讲请求通过该chenel发送给readLoop, readLoop后面解释
writech chan writeRequest // written by roundTrip; read by writeLoop // writeTrop 从中读取写入请求并执行写入
closech chan struct{} // closed when conn closed // 连接关闭的时候从该channle通信
isProxy bool
sawEOF bool // whether we've seen EOF from conn; owned by readLoop
readLimit int64 // bytes allowed to be read; owned by readLoop
// writeErrCh passes the request write error (usually nil)
// from the writeLoop goroutine to the readLoop which passes
// it off to the res.Body reader, which then uses it to decide
// whether or not a connection can be reused. Issue 7569.
writeErrCh chan error // writeLoopDone chan struct{} // closed when write loop ends // Both guarded by Transport.idleMu:
idleAt time.Time // time it last become idle
idleTimer *time.Timer // holding an AfterFunc to close it mu sync.Mutex // guards following fields
numExpectedResponses int //表示当期期望的返回response数目
closed error // set non-nil when conn is closed, before closech is closed
canceledErr error // set non-nil if conn is canceled
broken bool // an error has happened on this connection; marked broken so it's not reused.
reused bool // whether conn has had successful request/response and is being reused.
// mutateHeaderFunc is an optional func to modify extra
// headers on each outbound request before it's written. (the
// original Request given to RoundTrip is not modified)
mutateHeaderFunc func(Header)
}
type Transport struct {
idleMu sync.Mutex // 互斥锁,用于保护下面空闲连接池
wantIdle bool // user has requested to close all idle conns// 标识是否idle
idleConn map[connectMethodKey][]*persistConn // most recently used at end // 空闲连接池
idleConnCh map[connectMethodKey]chan *persistConn // 用于在groutine中间传递空闲的连接,一般用于当连接池中没有连接,但是还有请求需要处理,当连接池中出现空闲连接时通过该channel通知
idleLRU connLRU reqMu sync.Mutex
reqCanceler map[*Request]func(error) altMu sync.Mutex // guards changing altProto only
altProto atomic.Value // of nil or map[string]RoundTripper, key is URI scheme connCountMu sync.Mutex
connPerHostCount map[connectMethodKey]int
connPerHostAvailable map[connectMethodKey]chan struct{} // Proxy specifies a function to return a proxy for a given
// Request. If the function returns a non-nil error, the
// request is aborted with the provided error.
//
// The proxy type is determined by the URL scheme. "http",
// "https", and "socks5" are supported. If the scheme is empty,
// "http" is assumed.
//
// If Proxy is nil or returns a nil *URL, no proxy is used.
Proxy func(*Request) (*url.URL, error) // DialContext specifies the dial function for creating unencrypted TCP connections.
// If DialContext is nil (and the deprecated Dial below is also nil),
// then the transport dials using package net.
//
// DialContext runs concurrently with calls to RoundTrip.
// A RoundTrip call that initiates a dial may end up using
// a connection dialed previously when the earlier connection
// becomes idle before the later DialContext completes.
DialContext func(ctx context.Context, network, addr string) (net.Conn, error)// 用于新建连接时使用 // Dial specifies the dial function for creating unencrypted TCP connections.
//
// Dial runs concurrently with calls to RoundTrip.
// A RoundTrip call that initiates a dial may end up using
// a connection dialed previously when the earlier connection
// becomes idle before the later Dial completes.
//
// Deprecated: Use DialContext instead, which allows the transport
// to cancel dials as soon as they are no longer needed.
// If both are set, DialContext takes priority.
Dial func(network, addr string) (net.Conn, error) // DialTLS specifies an optional dial function for creating
// TLS connections for non-proxied HTTPS requests.
//
// If DialTLS is nil, Dial and TLSClientConfig are used.
//
// If DialTLS is set, the Dial hook is not used for HTTPS
// requests and the TLSClientConfig and TLSHandshakeTimeout
// are ignored. The returned net.Conn is assumed to already be
// past the TLS handshake.
DialTLS func(network, addr string) (net.Conn, error) // TLSClientConfig specifies the TLS configuration to use with
// tls.Client.
// If nil, the default configuration is used.
// If non-nil, HTTP/2 support may not be enabled by default.
TLSClientConfig *tls.Config // TLSHandshakeTimeout specifies the maximum amount of time waiting to
// wait for a TLS handshake. Zero means no timeout.
TLSHandshakeTimeout time.Duration // DisableKeepAlives, if true, disables HTTP keep-alives and
// will only use the connection to the server for a single
// HTTP request.
//
// This is unrelated to the similarly named TCP keep-alives.
DisableKeepAlives bool // DisableCompression, if true, prevents the Transport from
// requesting compression with an "Accept-Encoding: gzip"
// request header when the Request contains no existing
// Accept-Encoding value. If the Transport requests gzip on
// its own and gets a gzipped response, it's transparently
// decoded in the Response.Body. However, if the user
// explicitly requested gzip it is not automatically
// uncompressed.
DisableCompression bool // MaxIdleConns controls the maximum number of idle (keep-alive)
// connections across all hosts. Zero means no limit.
MaxIdleConns int // MaxIdleConnsPerHost, if non-zero, controls the maximum idle
// (keep-alive) connections to keep per-host. If zero,
// DefaultMaxIdleConnsPerHost is used.
MaxIdleConnsPerHost int // MaxConnsPerHost optionally limits the total number of
// connections per host, including connections in the dialing,
// active, and idle states. On limit violation, dials will block.
//
// Zero means no limit.
//
// For HTTP/2, this currently only controls the number of new
// connections being created at a time, instead of the total
// number. In practice, hosts using HTTP/2 only have about one
// idle connection, though.
MaxConnsPerHost int // IdleConnTimeout is the maximum amount of time an idle
// (keep-alive) connection will remain idle before closing
// itself.
// Zero means no limit.
IdleConnTimeout time.Duration // ResponseHeaderTimeout, if non-zero, specifies the amount of
// time to wait for a server's response headers after fully
// writing the request (including its body, if any). This
// time does not include the time to read the response body.
ResponseHeaderTimeout time.Duration // ExpectContinueTimeout, if non-zero, specifies the amount of
// time to wait for a server's first response headers after fully
// writing the request headers if the request has an
// "Expect: 100-continue" header. Zero means no timeout and
// causes the body to be sent immediately, without
// waiting for the server to approve.
// This time does not include the time to send the request header.
ExpectContinueTimeout time.Duration // TLSNextProto specifies how the Transport switches to an
// alternate protocol (such as HTTP/2) after a TLS NPN/ALPN
// protocol negotiation. If Transport dials an TLS connection
// with a non-empty protocol name and TLSNextProto contains a
// map entry for that key (such as "h2"), then the func is
// called with the request's authority (such as "example.com"
// or "example.com:1234") and the TLS connection. The function
// must return a RoundTripper that then handles the request.
// If TLSNextProto is not nil, HTTP/2 support is not enabled
// automatically.
TLSNextProto map[string]func(authority string, c *tls.Conn) RoundTripper // ProxyConnectHeader optionally specifies headers to send to
// proxies during CONNECT requests.
ProxyConnectHeader Header // MaxResponseHeaderBytes specifies a limit on how many
// response bytes are allowed in the server's response
// header.
//
// Zero means to use a default limit.
MaxResponseHeaderBytes int64 // nextProtoOnce guards initialization of TLSNextProto and
// h2transport (via onceSetNextProtoDefaults)
nextProtoOnce sync.Once
h2transport h2Transport // non-nil if http2 wired up
}

如此便是整个流程,其实还是很清晰的,最后总结一下:

tranport用来建立一个连接,其中维护了一个空闲连接池idleConn map[connectMethodKey][]*persistConn,其中的每个成员都是一个persistConn对象,persistConn是个具体的连接实例,包含了连接的上下文,会启动两个groutine分别执行readLoopwriteLoop, 每当transport调用roundTrip的时候,就会从连接池中选择一个空闲的persistConn,然后调用其roundTrip方法,将读写请求通过channel分别发送到readLoopwriteLoop中,然后会进行select各个channel的信息,包括连接关闭,请求超时,writeLoop出错, readLoop返回读取结果等。在writeLoop中发送请求,在readLoop中获取response并通过channe返回给roundTrip函数中,并再次将自己加入到idleConn中,等待下次请求到来。

推荐阅读

Go HTTP Client 持久连接

golang http/transport 代码分析的更多相关文章

  1. wifi display代码 分析

    转自:http://blog.csdn.net/lilian0118/article/details/23168531 这一章中我们来看Wifi Display连接过程的建立,包含P2P的部分和RTS ...

  2. jQuery File Upload 插件 php代码分析

    jquery file upload php代码分析首先进入构造方法 __construct() 再进入 initialize()因为我是post方式传的数据  在进入initialize()中的po ...

  3. 手机自动化测试:Appium源码分析之跟踪代码分析九

    手机自动化测试:Appium源码分析之跟踪代码分析九   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家 ...

  4. Hive metastore整体代码分析及详解

    从上一篇对Hive metastore表结构的简要分析中,我再根据数据设计的实体对象,再进行整个代码结构的总结.那么我们先打开metadata的目录,其目录结构: 可以看到,整个hivemeta的目录 ...

  5. OVS 内核KEY值提取及匹配流表代码分析

    原文链接:http://ry0117.com/2016/12/24/OVS内核KEY值提取及匹配流表代码分析/ 当开启OVS后,创建datapath类型为system的网桥并他添加相关接口,OVS网桥 ...

  6. ADB结构及代码分析【转】

    本文转载自:http://blog.csdn.net/happylifer/article/details/7682563 最近因为需要,看了下adb的源代码,感觉这个作者很牛,设计的很好,于是稍微做 ...

  7. 【miscellaneous】海康相机RTSP连接代码分析

    海康相机RTSP连接代码分析 最近在做海康相机rtsp连接获取音视频的工作,现在介绍一下分析过程和源码. [源码在我上传的共享资料中: http://download.csdn.net/detail/ ...

  8. golang 性能调优分析工具 pprof(下)

    golang 性能调优分析工具 pprof(上)篇, 这是下篇. 四.net/http/pprof 4.1 代码例子 1 go version go1.13.9 把上面的程序例子稍微改动下,命名为 d ...

  9. Android代码分析工具lint学习

    1 lint简介 1.1 概述 lint是随Android SDK自带的一个静态代码分析工具.它用来对Android工程的源文件进行检查,找出在正确性.安全.性能.可使用性.可访问性及国际化等方面可能 ...

随机推荐

  1. IP和归属地

    ip: http://www.ip.cn/index.php?ip=10.132.98.143 归属地: http://www.ip138.com:8080/search.asp?action=mob ...

  2. HDFS 原理、架构与特性介绍

    本文主要讲述 HDFS原理-架构.副本机制.HDFS负载均衡.机架感知.健壮性.文件删除恢复机制 1:当前HDFS架构详尽分析  HDFS架构  •NameNode  •DataNode  •Senc ...

  3. javascript和c#的深度拷贝的一种通用方法

    很简单,序列化后反序列化...

  4. asp.net c# select 动态加载数据

    1.说明通过 asp.net,利用jQuery ,c#语言给 select控件动态加载数据.前端页面使用的是.aspx类型的HTML页面,后台使用MVC上的controller控制器 2.webcon ...

  5. 九度OJ 1092:Fibonacci (递归)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1923 解决:1378 题目描述: The Fibonacci Numbers{0,1,1,2,3,5,8,13,21,34,55...} ...

  6. 虚拟化(五):vsphere高可用群集与容错(存储DRS是一种可用于将多个数据存储作为单个数据存储群集进行管理的功能)

    vsphere高级功能需要vcenter server和共享存储的支持才能实现.vsphere的高级功能有 vmotion.storage vmotion.vsphere HA.vsphere DRS ...

  7. mongodb学习之:数据库

    首先来介绍下Mongodb的基本概念: 左边一列是关系数据库的术语,右边这一列是NOSQL也就是mongodb的术语 database:       database         数据库 tabl ...

  8. ABAP 日期栏函数

    在SZC这个中有很多日期函数可以研究借鉴   ABAP - 日期格式转换 现在提供以下一些日期格式转换的函数: Below are several FMs which can be used to c ...

  9. Ace(一)环境搭建

    1.下载ACE源码代码    http://www.cs.wustl.edu/~schmidt/ACE.html 2.编译源代码    2.1 进入源码包解压后的ACE_wrappers\ace目录, ...

  10. android studio导入项目出现的奇葩错误

    1.Error:(1, 0) Cause: com/android/build/gradle/AppPlugin : Unsupported major.minor version 52.0