弱题(bzoj 2510)
Description
Input
Output
Sample Input
3 0
Sample Output
1.333
HINT
【样例说明】
第1次操作后,由于标号为2球个数为0,所以必然是一个标号为1的球变为标号为2的球。所以有2个标号为1的球,有1个标号为2的球。
第2次操作后,有1/3的概率标号为2的球变为标号为1的球(此时标号为1的球有3个),有2/3的概率标号为1的球变为标号为2的球(此时标号为1的球有1个),所以标号为1的球的期望个数为1/3*3+2/3*1 = 5/3。同理可求出标号为2的球期望个数为4/3。
【数据规模与约定】
对于10%的数据,N ≤ 5, M ≤ 5, K ≤ 10;
对于20%的数据,N ≤ 20, M ≤ 50, K ≤ 20;
对于30%的数据,N ≤ 100, M ≤ 100, K ≤ 100;
对于40%的数据,M ≤ 1000, K ≤ 1000;
对于100%的数据,N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647。
- /*
- 设f[i][j]为经过i次操作,编号为j的球的期望个数。
- 转移方程:f[i+1][j%n+1]+=f[i][j]/m;
- f[i+1][j]+=f[i][j]*(m-1)/m。
- 我想的矩阵乘法是设一个n*n的矩阵来表示各个编号的转移关系,但是复杂度不够,一种神奇的思路是设一个1*n的矩阵来表示每个点转移到它以下第几个点的贡献,因为对于每个编号来说,贡献是完全相同的所以可以这样转移。
- */
- #include<cstdio>
- #include<cstring>
- #include<iostream>
- #define N 1010
- using namespace std;
- int n,m,K,a[N];
- double ans[N];
- struct M{
- double v[N];
- M(){
- memset(v,,sizeof(v));
- }
- friend M operator*(M a,M b){
- M c;
- for(int i=;i<n;i++)
- for(int k=;k<n;k++)
- c.v[i]+=a.v[(i-k+n)%n]*b.v[k];
- return c;
- }
- friend M operator^(M a,int b){
- M ans;
- ans.v[]=;
- for(int i=b;i;i>>=,a=a*a)
- if(i&)ans=ans*a;
- return ans;
- }
- }B;
- int main(){
- scanf("%d%d%d",&n,&m,&K);
- for(int i=;i<=n;i++) scanf("%d",&a[i]);
- B.v[]=(1.0-1.0/m);B.v[]=1.0/m;
- B=B^K;
- for(int i=;i<=n;i++)
- for(int j=;j<n;j++){
- int t=i+j;
- t%=n;if(!t)t=n;
- ans[t]+=B.v[j]*a[i];
- }
- for(int i=;i<=n;i++)
- printf("%.3lf\n",ans[i]);
- return ;
- }
弱题(bzoj 2510)的更多相关文章
- bzoj 2510: 弱题 循环矩阵
2510: 弱题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 124 Solved: 61[Submit][Status][Discuss] De ...
- BZOJ 2510: 弱题( 矩阵快速幂 )
每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...
- [BZOJ 2510]弱题
2510: 弱题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 419 Solved: 226[Submit][Status][Discuss] D ...
- 【BZOJ 2510】 2510: 弱题 (矩阵乘法、循环矩阵的矩阵乘法)
2510: 弱题 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 374 Solved: 196 Description 有M个球,一开始每个球均有一 ...
- 【BZOJ2510】弱题 期望DP+循环矩阵乘法
[BZOJ2510]弱题 Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球 ...
- 「BZOJ2510」弱题
「BZOJ2510」弱题 这题的dp式子应该挺好写的,我是不会告诉你我开始写错了的,设f[i][j]为操作前i次,取到j小球的期望个数(第一维这么大显然不可做),那么 f[i][j]=f[i-1][j ...
- bzoj 2510 弱题 矩阵乘
看题就像矩阵乘 但是1000的数据无从下手 打表发现每一行的数都是一样的,只不过是错位的,好像叫什么循环矩阵 于是都可以转化为一行的,O(n3)->O(n2)*logk #include< ...
- bzoj 2510: 弱题 概率期望dp+循环矩阵
题目: Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M) ...
- 【循环矩阵乘优化DP】BZOJ 2510 弱题
题目大意 有 \(M\) 个球,一开始每个球均有一个初始标号,标号范围为 \(1\) - \(N\) 且为整数,标号为 \(i\) 的球有 \(a_i\) 个,并保证 \(\sum a_i = M\) ...
随机推荐
- JZTK项目 驾照题库项目servlet层得到的json字符串在浏览器中 汉字部分出现问号?无法正常显示的解决方法
servlet层中的代码如下: package com.swift.jztk.servlet; import java.io.IOException; import javax.servlet.Ser ...
- ARC机制中的Strong和weak
什么是ARC Automatic Reference Counting,自动引用计数,即ARC,可以说是WWDC2011和iOS5所引入的最大的变革和最激动人心的变化.ARC是新的LLVM 3.0编译 ...
- JS中的引用、浅拷贝和深拷贝
js的深拷贝浅拷贝是很常遇到的问题,一直模模糊糊有点说不过去,所以这次好好总结一下. 1.js的引用 JS分为基础类型和引用类型两种数据类型: 基础类型:number.string.boolean.n ...
- SummerVocation_Learning--java的自动打包与解包
Auto Boxing: 自动将基础类型转换成对象(JDK1.5之后支持) Auto UnBoxing:自动将对象转换成基础类型 如 Map中的put方法,如果要传入键值对<a,1>,&l ...
- ngin负载均衡集群(一)
一.nginx负载均衡集群介绍: 1.反向代理与负载均衡概念简介严格地说, nginx仅仅是作为 Nginx Proxy反向代理使用的,因为这个反向代理功能表现的效果是负载均衡集群的效果,所以本文称之 ...
- php中foreach循环遍历二维数组
最近在用tp3.2框架,在查询的时候用到了select(),这条语句返回的是二维数组,所以在对返回的数据做处理时,遇到了些麻烦,百度了下foreach,终于用foreach解决了数据的筛选问题 (因为 ...
- PHP使用CURL_MULTI实现多线程采集
$connomains = array( "http://www.baidu.com/", "http://www.hao123.com/", "ht ...
- Roads in the North POJ - 2631
Roads in the North POJ - 2631 Building and maintaining roads among communities in the far North is a ...
- Java面试——多线程面试题总结
)两者都在等待对方所持有但是双方都不释放的锁,这时便会一直阻塞形成死锁. //存放两个资源等待被使用 public class Resource { public static Object obj1 ...
- P2485 [SDOI2011]计算器
P2485 [SDOI2011]计算器 题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y.z.p,计算y^z mod p 的值: 2.给定y.z.p,计算满足xy ≡z(mod p)的最 ...