Spoj 839 Optimal Marks

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 908  Solved: 347
[Submit][Status][Discuss]

Description

定义无向图中的一条边的值为:这条边连接的两个点的值的异或值。
定义一个无向图的值为:这个无向图所有边的值的和。
给你一个有n个结点m条边的无向图。其中的一些点的值是给定的,而其余的点的值由你决定(但要求均为非负数),使得这个无向图的值最小。在无向图的值最小的前提下,使得无向图中所有点的值的和最小。
 

Input

第一行,两个数n,m,表示图的点数和边数。
接下来n行,每行一个数,按编号给出每个点的值(若为负数则表示这个点的值由你决定,值的绝对值大小不超过10^9)。
接下来m行,每行二个数a,b,表示编号为a与b的两点间连一条边。(保证无重边与自环。)
 

Output

    第一行,一个数,表示无向图的值。
    第二行,一个数,表示无向图中所有点的值的和。
 

Sample Input

3 2
2
-1
0
1 2
2 3

Sample Output

2
2

HINT

数据约定

n<=500,m<=2000

样例解释

2结点的值定为0即可。

因为是xor,可以从按位的思考

这种两个答案的,二维偏序差不多,一般会想到费用流,

但是这里可以是图的权值扩大到点权和到达不了的状态,即不由点权和影响。

这样/mx 为图的权值,%mx为点的权和。

然后考虑建图,设S为0集合,T为1集合,所以只需要考虑边两个端点一个选S,一个选T这样才会产生值。

看限制了,如果当前这位有值,那么就按这个赋值,如果是1,那么S-i为inf,i-T为1;

这样的,边的话,就是10000的边。

具体看代码。

每次的最大流的意义不同,代表1<<i。

 #include<cstring>
#include<cmath>
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue> #define inf 1000000007
#define ll long long
#define N 507
#define M 20007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m,S,T;
int num[N];
int cnt,hed[N],nxt[M],rea[M],val[M],cur[N];
int dis[N];
ll ans1,ans2;
struct Node
{
int x,y;
}a[M]; void add(int u,int v,int w)
{
nxt[++cnt]=hed[u];
hed[u]=cnt;
rea[cnt]=v;
val[cnt]=w;
}
void add_two_edge(int u,int v,int w)
{
add(u,v,w);
add(v,u,);
}
void build(int x)
{
memset(hed,-,sizeof(hed)),cnt=;
for (int i=;i<=n;i++)
if (num[i]<) add_two_edge(i,T,);
else
{
if (num[i]&(<<x))add_two_edge(S,i,inf),add_two_edge(i,T,);
else add_two_edge(i,T,inf);
}
for (int i=;i<=m;i++)
add_two_edge(a[i].x,a[i].y,),
add_two_edge(a[i].y,a[i].x,);
}
bool bfs()
{
for (int i=S;i<=T;i++)dis[i]=-;
dis[S]=;
queue<int>q;q.push(S);
while(!q.empty())
{
int u=q.front();q.pop();
for (int i=hed[u];i!=-;i=nxt[i])
{
int v=rea[i],fee=val[i];
if (dis[v]!=-||!fee)continue;
dis[v]=dis[u]+;
if (v==T)return ;
q.push(v);
}
}
return ;
}
ll dfs(int u,int MX)
{
ll res=;
if (MX==||u==T)return MX;
for (int i=cur[u];i!=-;i=nxt[i])
{
int v=rea[i],fee=val[i];
if (dis[v]!=dis[u]+)continue;
int x=dfs(v,min(MX,fee));
cur[u]=i,res+=x,MX-=x;
val[i]-=x,val[i^]+=x;
if (MX==) break;
}
if (!res)dis[u]=-;
return res;
}
ll dinic()
{
ll res=;
while(bfs())
{
for (int i=S;i<=T;i++)cur[i]=hed[i];
res+=dfs(,inf);
}
return res;
}
int main()
{
n=read(),m=read(),S=,T=n+;int mx=-;
for (int i=;i<=n;i++)
{
num[i]=read();
mx=max(mx,num[i]);
}
for (int i=;i<=m;i++)a[i].x=read(),a[i].y=read();
for (int i=;(<<i)<=mx;i++)
{
build(i);
ll res=dinic();
ans1+=(res/)*(ll)(<<i);
ans2+=(res%)*(ll)(<<i);
}
printf("%lld\n%lld\n",ans1,ans2);
}

【bzoj2400】Spoj 839 Optimal Marks 按位最大流的更多相关文章

  1. BZOJ2400: Spoj 839 Optimal Marks

    Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其 ...

  2. BZOJ 2400: Spoj 839 Optimal Marks (按位最小割)

    题面 一个无向图,一些点有固定权值,另外的点权值由你来定. 边的值为两点的异或值,一个无向图的值定义为所有边的值之和. 求无向图的最小值 分析 每一位都互不干扰,按位处理. 用最小割算最小值 保留原图 ...

  3. 【BZOJ2400】Spoj 839 Optimal Marks 最小割

    [BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...

  4. 【bzoj2400】Spoj 839 Optimal Marks 网络流最小割

    题目描述 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其余的点的值由你 ...

  5. spoj 839 Optimal Marks(二进制位,最小割)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17875 [题意] 给定一个图,图的权定义为边的两端点相抑或值的 ...

  6. SPOJ 839 Optimal Marks(最小割的应用)

    https://vjudge.net/problem/SPOJ-OPTM 题意: 给出一个无向图G,每个点 v 以一个有界非负整数 lv 作为标号,每条边e=(u,v)的权w定义为该边的两个端点的标号 ...

  7. 图论(网络流):SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks You are given an undirected graph G(V, E). Each vertex has a mark which is an i ...

  8. SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks no tags  You are given an undirected graph G(V, E). Each vertex has a mark whic ...

  9. 839. Optimal Marks - SPOJ

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

随机推荐

  1. vue学习之路 - 3.基本操作(中)

    基本操作(中) 本章节主要介绍:vue的条件渲染.列表渲染,计算属性和侦听器 条件渲染和列表渲染 条件渲染主要使用到了 v-if 指令,列表渲染主要使用了 v-for 指令. 下面介绍 v-if .  ...

  2. webSocket使用心跳包实现断线重连

    首先new一个webscoket的连接 let noticeSocketLink = new WebSocket(‘webSocket的地址’) 这里是连接成功之后的操作 linkNoticeWebs ...

  3. 学习笔记(六): Regularization for Simplicity

    目录 Overcrossing? L₂ Regularization Lambda Examining L2 regularization Check Understanding Glossay Ov ...

  4. 转载:java分布式服务框架Dubbo的介绍与使用

    1. Dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.简单的说,dubbo就是个服务框架,如果没有分布式的需求,其实是不需 ...

  5. node 日志分割-pm2-logrotate

    使用pm2-logrotate进行pm2日志切割,测试是按照文件大小1k切割: 安装 pm2 install pm2-logrotate 设置 重启 截图 截图是按照文件大小分割,如果文件小于设置分割 ...

  6. scrapy使用流程

    安装:通过pip install scrapy即可安装 在ubuntu上安装scrapy之前,需要先安装以下依赖:sudo apt-get install python3-dev build-esse ...

  7. LOL游戏基本代码

    class Hero: def __init__(self, new_nickname, new_aggressivity, new_life_value, new_money, new_armor ...

  8. javascript sprintf方法

    转载自: http://demon.tw/programming/javascript-sprintf.html function str_repeat(i, m) { for (var o = [] ...

  9. 科学计算库Numpy——数组形状

    改变数组维数 给数组的shape属性赋值,改变数组的维数.数组的大小是不能改变的. 增加维度 使用np.newaxis增加维度. 删除维度 使用squeeze()删除维度是1的维度,也就是删除shap ...

  10. music21 关联 MuseScore 和 Lilypond

    在python安装 music21后,需要关联 musescore 或 lilypond 才能可以用图形化的形式看到 乐谱. 因此 在安装 music21后,需要配置环境变量,yvivid 在 mus ...