传送门

不明白为什么大佬们一眼就看出这是最小割……

所以总而言之这就是一个最小割我也不知道为什么

然后边数太多直接跑会炸,所以要把平面图转对偶图,然后跑一个最短路即可

至于建图……请看代码我实在无能为力

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=1e6+,M=2e6+;
struct node{
int u,dis;
node(){}
node(int u,int dis):u(u),dis(dis){}
inline bool operator <(const node &b)const
{return dis>b.dis;}
};
int head[N],ver[M],edge[M],Next[M],tot;
int dis[N],vis[N];
int n,S,T,x;
priority_queue<node> q;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
}
int spfa(){
memset(dis,0x3f,sizeof(dis));
memset(vis,,sizeof(vis));
q.push(node(S,)),dis[S]=;
while(!q.empty()){
int u=q.top().u;q.pop();
if(vis[u]) continue;
vis[u]=;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(cmin(dis[v],dis[u]+edge[i]))
q.push(node(v,dis[v]));
}
}
return dis[T];
}
int main(){
// freopen("testdata.in","r",stdin);
n=read();S=n*n+,T=S+;
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
x=read();
i==?add(j,T,x):i==n?add(S,(i-)*n+j,x):add(i*n+j,(i-)*n+j,x);
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
x=read();
j==?add(S,(i-)*n+j+,x):j==n?add(i*n,T,x):add((i-)*n+j,(i-)*n+j+,x);
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
x=read();
i==?add(T,j,x):i==n?add((i-)*n+j,S,x):add((i-)*n+j,i*n+j,x);
}
for(int i=;i<=n;++i)
for(int j=;j<=n;++j){
x=read();
j==?add((i-)*n+j+,S,x):j==n?add(T,i*n,x):add((i-)*n+j+,(i-)*n+j,x);
}
printf("%d\n",spfa());
return ;
}

洛谷P2046 [NOI2010]海拔(最小割,平面图转对偶图)的更多相关文章

  1. 洛谷$P2046\ [NOI2010]$海拔 网络流+对偶图

    正解:网络流+对偶图 解题报告: 传送门$QwQ$ $umm$之前省选前集训的时候叶佬考过?然而这和我依然不会做有什么关系呢$kk$ 昂这题首先要两个结论?第一个是说每个位置的海拔一定是0/1,还一个 ...

  2. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  3. 【洛谷P3329】 [ZJOI2011]最小割(最小割树)

    洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树 ...

  4. 洛谷2046 NOI2010海拔

    QwQ题目太长 这里就不复制了 题目 这个题...算是个比较经典的平面图最小割变成对偶图的最短路了QwQ 首先考虑最小割应该怎么做. 有一个性质,就是每个点的海拔要么是1,要么是0 QwQ不过这个我不 ...

  5. [NOI2010]海拔(最小割)

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个 正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个 ...

  6. 【bzoj2007】[Noi2010]海拔 最小割+对偶图+最短路

    题目描述 YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作一个正方形,每一个区域也可看作一个正方形.从而,YT城市中包括(n+1)×(n+1)个交 ...

  7. bzoj 2007 [Noi2010]海拔——最小割转最短路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2007 一个点的高度一定不是0就是1.答案一定形如一个左上角的连通块全是0的点.一个右下角的连 ...

  8. [NOI2010]海拔——最小割+对偶图

    题目链接 SOLUTION 想一下最优情况下肯定让平路或下坡尽量多,于是不难想到这样构图:包括左上角的一部分全部为\(0\),包括右下角的一部分全部为\(1\),于是现在问题转化为求那个分界线是什么. ...

  9. BZOJ 1001 狼抓兔子 (网络流最小割/平面图的对偶图的最短路)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 算法讨论: 1.可以用最大流做,最大流等于最小割. 2.可以把这个图转化其对偶图,然 ...

随机推荐

  1. Java for LeetCode 129 Sum Root to Leaf Numbers

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  2. Ruby 打印

    puts: 输出内容自动换行,转义后再输出(转义符),可传递多个参数puts("this is ge num=",a,"this is b=",b)   pri ...

  3. 【转载】帧缓冲驱动程序分析及其在BSP上的添加

    原文地址:(四)帧缓冲驱动程序分析及其在BSP上的添加 作者:gfvvz 一.BSP修改及其分析   1. BSP中直接配置的四个寄存器 S3C6410数据手册的第14.5部分是显示控制器的编程模型部 ...

  4. poj 1469 COURSES (二分图模板应用 【*模板】 )

    COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 18454   Accepted: 7275 Descript ...

  5. math worksheet作业纸生成器

    https://www.education.com/worksheet-generator/math/ https://www.mathgoodies.com/worksheets/generator ...

  6. apace搭建站点

    Listen 127.0.0.1:3310<VirtualHost *:3306> ServerName 127.0.0.1:3306 DocumentRoot "F:/Baid ...

  7. laravel基础课程---15、分页及验证码(lavarel分页效果如何实现)

    laravel基础课程---15.分页及验证码(lavarel分页效果如何实现) 一.总结 一句话总结: 数据库的paginate方法:$data=\DB::table("user" ...

  8. ResNeXt——与 ResNet 相比,相同的参数个数,结果更好:一个 101 层的 ResNeXt 网络,和 200 层的 ResNet 准确度差不多,但是计算量只有后者的一半

    from:https://blog.csdn.net/xuanwu_yan/article/details/53455260 背景 论文地址:Aggregated Residual Transform ...

  9. bzoj3462DZY Loves Math II

    数据范围:$$2 \leq S \leq 2 * 10^6$$ $$1 \leq n \leq 10^{18}$$ $$ 1 \leq q \leq 10^5$$ 数学+dp 题解写一年系列... 观 ...

  10. HihoCoder1655 : 第K小最简真分数([Offer收割]编程练习赛39)(唯一分解+容斥定理+二分)(不错的数学题)

    描述 给一个整数N,请你求出以N为分母的最简(既约)真分数中第K小的是多少? 输入 两个整数N个K. 对于30%的数据,1 <= N <= 1000000 对于100%的数据,1 < ...