Field-length norm

How long is the field? The shorter the field, the higher the weight. If a term appears in a short field, such as a title field, it is more likely that the content of that field is about the term than if the same term appears in a much bigger body field. The field length norm is calculated as follows:

norm(d) = 1 / √numTerms 

The field-length norm (norm) is the inverse square root of the number of terms in the field.

While the field-length norm is important for full-text search, many other fields don’t need norms. Norms consume approximately 1 byte per string field per document in the index, whether or not a document contains the field. Exact-value not_analyzed string fields have norms disabled by default, but you can use the field mapping to disable norms on analyzed fields as well:

PUT /my_index
{
"mappings": {
"doc": {
"properties": {
"text": {
"type": "string",
"norms": { "enabled": false }
}
}
}
}
}

This field will not take the field-length norm into account. A long field and a short field will be scored as if they were the same length.

For use cases such as logging, norms are not useful. All you care about is whether a field contains a particular error code or a particular browser identifier. The length of the field does not affect the outcome. Disabling norms can save a significant amount of memory.

Putting it together

These three factors—term frequency, inverse document frequency, and field-length norm—are calculated and stored at index time. Together, they are used to calculate the weight of a single term in a particular document.

When we refer to documents in the preceding formulae, we are actually talking about a field within a document. Each field has its own inverted index and thus, for TF/IDF purposes, the value of the field is the value of the document.

When we run a simple term query with explain set to true (see Understanding the Score), you will see that the only factors involved in calculating the score are the ones explained in the preceding sections:

PUT /my_index/doc/1
{ "text" : "quick brown fox" } GET /my_index/doc/_search?explain
{
"query": {
"term": {
"text": "fox"
}
}
}

The (abbreviated) explanation from the preceding request is as follows:

weight(text:fox in 0) [PerFieldSimilarity]:  0.15342641 

result of:
fieldWeight in 0 0.15342641
product of:
tf(freq=1.0), with freq of 1: 1.0

        idf(docFreq=1, maxDocs=1):           0.30685282 

        fieldNorm(doc=0):                    0.5 

The final score for term fox in field text in the document with internal Lucene doc ID 0.

The term fox appears once in the text field in this document.

The inverse document frequency of fox in the text field in all documents in this index.

The field-length normalization factor for this field.

Of course, queries usually consist of more than one term, so we need a way of combining the weights of multiple terms. For this, we turn to the vector space model.

 

 

ES搜索排序,文档相关度评分介绍——Field-length norm的更多相关文章

  1. ES搜索排序,文档相关度评分介绍——Vector Space Model

    Vector Space Model The vector space model provides a way of comparing a multiterm query against a do ...

  2. ES搜索排序,文档相关度评分介绍——TF-IDF—term frequency, inverse document frequency, and field-length norm—are calculated and stored at index time.

    Theory Behind Relevance Scoring Lucene (and thus Elasticsearch) uses the Boolean model to find match ...

  3. ES 文档与索引介绍

    在之前的文章中,介绍了 ES 整体的架构和内容,这篇主要针对 ES 最小的存储单位 - 文档以及由文档组成的索引进行详细介绍. 会涉及到如下的内容: 文档的 CURD 操作. Dynamic Mapp ...

  4. ES-PHP向ES批量添加文档报No alive nodes found in your cluster

    ES-PHP向ES批量添加文档报No alive nodes found in your cluster 2016年12月14日 12:31:40 阅读数:2668 参考文章phpcurl 请求Chu ...

  5. atitit.vod search doc.doc 点播系统搜索功能设计文档

    atitit.vod search doc.doc 点播系统搜索功能设计文档 按键的enter事件1 Left rig事件1 Up down事件2 key_events.key_search = fu ...

  6. 【ElasticSearch】:索引Index、文档Document、字段Field

    因为从ElasticSearch6.X开始,官方准备废弃Type了.对应数据库,对ElasticSearch的理解如下: ElasticSearch 索引Index 文档Document 字段Fiel ...

  7. es之对文档进行更新操作

    5.7.1:更新整个文档 ES中并不存在所谓的更新操作,而是用新文档替换旧文档: 在内部,Elasticsearch已经标记旧文档为删除并添加了一个完整的新文档并建立索引.旧版本文档不会立即消失 ,但 ...

  8. es搜索排序不正确

    沿用该文章里的数据https://www.cnblogs.com/MRLL/p/12691763.html 查询时发现,一模一样的name,但是相关度不一样 GET /z_test/doc/_sear ...

  9. MongoDB中的映射,限制记录和记录拼排序 文档的插入查询更新删除操作

    映射 在 MongoDB 中,映射(Projection)指的是只选择文档中的必要数据,而非全部数据.如果文档有 5 个字段,而你只需要显示 3 个,则只需选择 3 个字段即可. find() 方法 ...

随机推荐

  1. Vue 渲染优先级

    当 v-if 与 v-for 一起使用时,v-for 具有比 v-if 更高的优先级.

  2. libGDX 模块概览

    本文章翻译自libGDX官方wiki,.转载请注明出处:http://blog.csdn.net/kent_todo/article/details/37940595 libGDX官方网址:http: ...

  3. SharePoint 2013 和 SharePoint 2010 功能对比

    微软的网站找东西太麻烦了,在这记录一下. 从 SharePoint 2010 更改为 SharePoint 2013 http://technet.microsoft.com/zh-cn/librar ...

  4. 在Ubuntu 14.04 64bit中永久添加DNS的方法

    DNS信息是由/etc/resolv.conf提供的,它是每次开机时,由/sbin/resolvconf生成的/etc/resolv.conf是/run/resolvconf/resolv.conf的 ...

  5. java类库中的设计模式

    原帖:http://stackoverflow.com/questions/1673841/examples-of-gof-design-patterns 提问:我正在学习GoF的<设计模式&g ...

  6. msgsnd的一个小问题

    今天写了一个System V消息队列的小样例.定义了一个例如以下的结构体: #define MSG_SIZE 8192 struct request { long mtype; int client_ ...

  7. Newtonsoft.Json读取txt文件中json数据并存到SQL service 数据库!

    using System; using System.Collections.Generic; using System.Text; using System.IO; using Newtonsoft ...

  8. 【Unity3D】【NGUI】Atlas的动态创建

    NGUI版本号:3.6.5 1.參见SZUIAtlasMakerRuntimeTest设置对应的值以上值须要提前设置好 2.没有检查是否atlas可以正确创建,自己可以改,增加返回值 3.代码都是在N ...

  9. SQL Server 的collate的含义

    什么叫排序规则呢?MS是这样描述的:"在 Microsoft SQL Server 2000 中,字符串的物理存储由排序规则控制.排序规则指定表示每个字符的位模式以及存储和比较字符所使用的规 ...

  10. 访问一个绝对地址把一个整型数强制转换 (typecast)为一个指针是合法的

    在某工程中,要求设置一绝对地址为0x67a9的整型变量的值为0xaa66.编译器是一个纯粹的ANSI编译器.写代码去完成这一任务. 解析:这一问题测试你是否知道为了访问一个绝对地址把一个整型数强制转换 ...