densenet tensorflow 中文汉字手写识别
densenet 中文汉字手写识别,代码如下:
import tensorflow as tf
import os
import random
import math
import tensorflow.contrib.slim as slim
import time
import logging
import numpy as np
import pickle
from PIL import Image import tensorflow as tf
#from tflearn.layers.conv import global_avg_pool
from tensorflow.contrib.layers import batch_norm, flatten
from tensorflow.contrib.framework import arg_scope
import numpy as np # Hyperparameter
growth_k = 12
nb_block = 2 # how many (dense block + Transition Layer) ?
init_learning_rate = 1e-4
epsilon = 1e-8 # AdamOptimizer epsilon
dropout_rate = 0.2 # Momentum Optimizer will use
nesterov_momentum = 0.9
weight_decay = 1e-4 # Label & batch_size
class_num = 3755
batch_size = 128 total_epochs = 50 def conv_layer(input, filter, kernel, stride=1, layer_name="conv"):
with tf.name_scope(layer_name):
network = tf.layers.conv2d(inputs=input, filters=filter, kernel_size=kernel, strides=stride, padding='SAME')
return network def Global_Average_Pooling(x, stride=1):
#It is global average pooling without tflearn
width = np.shape(x)[1]
height = np.shape(x)[2]
pool_size = [width, height]
return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride) # The stride value does not matter
"""
return global_avg_pool(x, name='Global_avg_pooling')
# But maybe you need to install h5py and curses or not
""" def Batch_Normalization(x, training, scope):
with arg_scope([batch_norm],
scope=scope,
updates_collections=None,
decay=0.9,
center=True,
scale=True,
zero_debias_moving_mean=True) :
return tf.cond(training,
lambda : batch_norm(inputs=x, is_training=training, reuse=None),
lambda : batch_norm(inputs=x, is_training=training, reuse=True)) def Drop_out(x, rate, training) :
return tf.layers.dropout(inputs=x, rate=rate, training=training) def Relu(x):
return tf.nn.relu(x) def Average_pooling(x, pool_size=[2,2], stride=2, padding='VALID'):
return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride, padding=padding) def Max_Pooling(x, pool_size=[3,3], stride=2, padding='VALID'):
return tf.layers.max_pooling2d(inputs=x, pool_size=pool_size, strides=stride, padding=padding) def Concatenation(layers) :
return tf.concat(layers, axis=3) def Linear(x) :
return tf.layers.dense(inputs=x, units=class_num, name='linear') class DenseNet():
def __init__(self, x, nb_blocks, filters, training):
self.nb_blocks = nb_blocks
self.filters = filters
self.training = training
self.model = self.Dense_net(x) def bottleneck_layer(self, x, scope):
# print(x)
with tf.name_scope(scope):
x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
x = Relu(x)
x = conv_layer(x, filter=4 * self.filters, kernel=[1,1], layer_name=scope+'_conv1')
x = Drop_out(x, rate=dropout_rate, training=self.training) x = Batch_Normalization(x, training=self.training, scope=scope+'_batch2')
x = Relu(x)
x = conv_layer(x, filter=self.filters, kernel=[3,3], layer_name=scope+'_conv2')
x = Drop_out(x, rate=dropout_rate, training=self.training) # print(x) return x def transition_layer(self, x, scope):
with tf.name_scope(scope):
x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
x = Relu(x)
x = conv_layer(x, filter=self.filters, kernel=[1,1], layer_name=scope+'_conv1')
x = Drop_out(x, rate=dropout_rate, training=self.training)
x = Average_pooling(x, pool_size=[2,2], stride=2) return x def dense_block(self, input_x, nb_layers, layer_name):
with tf.name_scope(layer_name):
layers_concat = list()
layers_concat.append(input_x) x = self.bottleneck_layer(input_x, scope=layer_name + '_bottleN_' + str(0)) layers_concat.append(x) for i in range(nb_layers - 1):
x = Concatenation(layers_concat)
x = self.bottleneck_layer(x, scope=layer_name + '_bottleN_' + str(i + 1))
layers_concat.append(x) x = Concatenation(layers_concat) return x def Dense_net(self, input_x):
x = conv_layer(input_x, filter=2 * self.filters, kernel=[7,7], stride=2, layer_name='conv0')
x = Max_Pooling(x, pool_size=[3,3], stride=2) for i in range(self.nb_blocks) :
# 6 -> 12 -> 48
x = self.dense_block(input_x=x, nb_layers=4, layer_name='dense_'+str(i))
x = self.transition_layer(x, scope='trans_'+str(i)) """
x = self.dense_block(input_x=x, nb_layers=6, layer_name='dense_1')
x = self.transition_layer(x, scope='trans_1') x = self.dense_block(input_x=x, nb_layers=12, layer_name='dense_2')
x = self.transition_layer(x, scope='trans_2') x = self.dense_block(input_x=x, nb_layers=48, layer_name='dense_3')
x = self.transition_layer(x, scope='trans_3')
""" x = self.dense_block(input_x=x, nb_layers=32, layer_name='dense_final') # 100 Layer
x = Batch_Normalization(x, training=self.training, scope='linear_batch')
x = Relu(x)
x = Global_Average_Pooling(x)
x = flatten(x)
x = Linear(x) # x = tf.reshape(x, [-1, 10])
return x def build_graph(top_k):
# with tf.device('/cpu:0'):
# keep_prob = tf.placeholder(dtype=tf.float32, shape=[], name='keep_prob')
images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1], name='image_batch')
# label = tf.placeholder(tf.float32, shape=[None, 10])
labels = tf.placeholder(dtype=tf.int64, shape=[None], name='label_batch')
training_flag = tf.placeholder(tf.bool)
logits = DenseNet(x=images, nb_blocks=nb_block, filters=growth_k, training=training_flag).model
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
# loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)) """
l2_loss = tf.add_n([tf.nn.l2_loss(var) for var in tf.trainable_variables()])
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=nesterov_momentum, use_nesterov=True)
train = optimizer.minimize(cost + l2_loss * weight_decay)
In paper, use MomentumOptimizer
init_learning_rate = 0.1
but, I'll use AdamOptimizer
""" global_step = tf.get_variable("step", [], initializer=tf.constant_initializer(0.0), trainable=False)
rate = tf.train.exponential_decay(2e-4, global_step, decay_steps=2000, decay_rate=0.97, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate=rate, epsilon=epsilon)
train_op = optimizer.minimize(loss, global_step=global_step) accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), labels), tf.float32)) probabilities = logits
tf.summary.scalar('loss', loss)
tf.summary.scalar('accuracy', accuracy)
merged_summary_op = tf.summary.merge_all()
predicted_val_top_k, predicted_index_top_k = tf.nn.top_k(probabilities, k=top_k)
accuracy_in_top_k = tf.reduce_mean(tf.cast(tf.nn.in_top_k(probabilities, labels, top_k), tf.float32)) return {'images': images,
'labels': labels,
'training_flag': training_flag,
'top_k': top_k,
'global_step': global_step,
'train_op': train_op,
'loss': loss,
'accuracy': accuracy,
'accuracy_top_k': accuracy_in_top_k,
'merged_summary_op': merged_summary_op,
'predicted_distribution': probabilities,
'predicted_index_top_k': predicted_index_top_k,
'predicted_val_top_k': predicted_val_top_k} logger = logging.getLogger('Training a chinese write char recognition')
logger.setLevel(logging.INFO)
# formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
logger.addHandler(ch) run_mode = "train"
charset_size = class_num
max_steps = 122002
save_steps = 1000
cur_test_acc = 0 """
# for online 3755 words training
checkpoint_dir = '/aiml/dfs/checkpoint_888/'
train_data_dir = '/aiml/data/train/'
test_data_dir = '/aiml/data/test/'
log_dir = '/aiml/dfs/'
""" checkpoint_dir = './checkpoint_densenet/'
train_data_dir = './data/train/'
test_data_dir = './data/test/'
log_dir = './' tf.app.flags.DEFINE_string('mode', run_mode, 'Running mode. One of {"train", "valid", "test"}')
tf.app.flags.DEFINE_boolean('random_flip_up_down', True, "Whether to random flip up down")
tf.app.flags.DEFINE_boolean('random_brightness', True, "whether to adjust brightness")
tf.app.flags.DEFINE_boolean('random_contrast', True, "whether to random constrast") tf.app.flags.DEFINE_integer('charset_size', charset_size, "Choose the first `charset_size` character to conduct our experiment.")
tf.app.flags.DEFINE_integer('image_size', 64, "Needs to provide same value as in training.")
tf.app.flags.DEFINE_boolean('gray', True, "whether to change the rbg to gray")
tf.app.flags.DEFINE_integer('max_steps', max_steps, 'the max training steps ')
tf.app.flags.DEFINE_integer('eval_steps', 50, "the step num to eval")
tf.app.flags.DEFINE_integer('save_steps', save_steps, "the steps to save") tf.app.flags.DEFINE_string('checkpoint_dir', checkpoint_dir, 'the checkpoint dir')
tf.app.flags.DEFINE_string('train_data_dir', train_data_dir, 'the train dataset dir')
tf.app.flags.DEFINE_string('test_data_dir', test_data_dir, 'the test dataset dir')
tf.app.flags.DEFINE_string('log_dir', log_dir, 'the logging dir') ##############################
# resume training
tf.app.flags.DEFINE_boolean('restore', True, 'whether to restore from checkpoint')
############################## tf.app.flags.DEFINE_boolean('epoch', 10, 'Number of epoches')
tf.app.flags.DEFINE_boolean('batch_size', 128, 'Validation batch size')
FLAGS = tf.app.flags.FLAGS class DataIterator:
def __init__(self, data_dir):
# Set FLAGS.charset_size to a small value if available computation power is limited.
truncate_path = data_dir + ('%05d' % FLAGS.charset_size)
print(truncate_path)
self.image_names = []
for root, sub_folder, file_list in os.walk(data_dir):
if root < truncate_path:
self.image_names += [os.path.join(root, file_path) for file_path in file_list]
random.shuffle(self.image_names)
self.labels = [int(file_name[len(data_dir):].split(os.sep)[0]) for file_name in self.image_names] @property
def size(self):
return len(self.labels) @staticmethod
def data_augmentation(images):
if FLAGS.random_flip_up_down:
# images = tf.image.random_flip_up_down(images)
images = tf.contrib.image.rotate(images, random.randint(0, 15) * math.pi / 180, interpolation='BILINEAR')
if FLAGS.random_brightness:
images = tf.image.random_brightness(images, max_delta=0.3)
if FLAGS.random_contrast:
images = tf.image.random_contrast(images, 0.8, 1.2)
return images def input_pipeline(self, batch_size, num_epochs=None, aug=False):
images_tensor = tf.convert_to_tensor(self.image_names, dtype=tf.string)
labels_tensor = tf.convert_to_tensor(self.labels, dtype=tf.int64)
input_queue = tf.train.slice_input_producer([images_tensor, labels_tensor], num_epochs=num_epochs) labels = input_queue[1]
images_content = tf.read_file(input_queue[0])
images = tf.image.convert_image_dtype(tf.image.decode_png(images_content, channels=1), tf.float32)
if aug:
images = self.data_augmentation(images)
new_size = tf.constant([FLAGS.image_size, FLAGS.image_size], dtype=tf.int32)
images = tf.image.resize_images(images, new_size)
image_batch, label_batch = tf.train.shuffle_batch([images, labels], batch_size=batch_size, capacity=50000,
min_after_dequeue=10000)
return image_batch, label_batch def train():
print('Begin training')
train_feeder = DataIterator(FLAGS.train_data_dir)
test_feeder = DataIterator(FLAGS.test_data_dir)
with tf.Session() as sess:
train_images, train_labels = train_feeder.input_pipeline(batch_size=FLAGS.batch_size, aug=True)
test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size)
graph = build_graph(top_k=1)
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
saver = tf.train.Saver() train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/val')
start_step = 0
if FLAGS.restore:
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt)
print("restore from the checkpoint {0}".format(ckpt))
start_step += int(ckpt.split('-')[-1]) logger.info(':::Training Start:::')
try:
while not coord.should_stop():
start_time = time.time()
train_images_batch, train_labels_batch = sess.run([train_images, train_labels])
feed_dict = {graph['images']: train_images_batch,
graph['labels']: train_labels_batch,
graph['training_flag']: True}
_, loss_val, train_summary, step = sess.run(
[graph['train_op'], graph['loss'], graph['merged_summary_op'], graph['global_step']],
feed_dict=feed_dict)
train_writer.add_summary(train_summary, step)
end_time = time.time()
logger.info("the step {0} takes {1} loss {2}".format(step, end_time - start_time, loss_val))
if step > FLAGS.max_steps:
break
accuracy_test = 0
if step % FLAGS.eval_steps == 1:
test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
feed_dict = {graph['images']: test_images_batch,
graph['labels']: test_labels_batch,
graph['training_flag']: False}
accuracy_test, test_summary = sess.run(
[graph['accuracy'], graph['merged_summary_op']],
feed_dict=feed_dict)
test_writer.add_summary(test_summary, step)
logger.info('===============Eval a batch=======================')
logger.info('the step {0} test accuracy: {1}'
.format(step, accuracy_test))
logger.info('===============Eval a batch=======================')
if step % FLAGS.save_steps == 1:
logger.info('Save the ckpt of {0}'.format(step))
saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'),
global_step=graph['global_step'])
global cur_test_acc
cur_test_acc = accuracy_test
except tf.errors.OutOfRangeError:
logger.info('==================Train Finished================')
saver.save(sess, os.path.join(FLAGS.checkpoint_dir, 'my-model'), global_step=graph['global_step'])
finally:
coord.request_stop()
coord.join(threads) def validation():
print('validation')
test_feeder = DataIterator(FLAGS.test_data_dir) final_predict_val = []
final_predict_index = []
groundtruth = [] with tf.Session() as sess:
test_images, test_labels = test_feeder.input_pipeline(batch_size=FLAGS.batch_size, num_epochs=1)
graph = build_graph(top_k=3) sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer()) # initialize test_feeder's inside state coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord) saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt)
print("restore from the checkpoint {0}".format(ckpt)) print(':::Start validation:::')
try:
i = 0
acc_top_1, acc_top_k = 0.0, 0.0
while not coord.should_stop():
i += 1
start_time = time.time()
test_images_batch, test_labels_batch = sess.run([test_images, test_labels])
feed_dict = {graph['images']: test_images_batch,
graph['labels']: test_labels_batch,
graph['training_flag']: False}
batch_labels, probs, indices, acc_1, acc_k = sess.run([graph['labels'],
graph['predicted_val_top_k'],
graph['predicted_index_top_k'],
graph['accuracy'],
graph['accuracy_top_k']], feed_dict=feed_dict)
final_predict_val += probs.tolist()
final_predict_index += indices.tolist()
groundtruth += batch_labels.tolist()
acc_top_1 += acc_1
acc_top_k += acc_k
end_time = time.time()
logger.info("the batch {0} takes {1} seconds, accuracy = {2}(top_1) {3}(top_k)"
.format(i, end_time - start_time, acc_1, acc_k)) except tf.errors.OutOfRangeError:
logger.info('==================Validation Finished================')
acc_top_1 = acc_top_1 * FLAGS.batch_size / test_feeder.size
acc_top_k = acc_top_k * FLAGS.batch_size / test_feeder.size
logger.info('top 1 accuracy {0} top k accuracy {1}'.format(acc_top_1, acc_top_k))
finally:
coord.request_stop()
coord.join(threads)
return {'prob': final_predict_val, 'indices': final_predict_index, 'groundtruth': groundtruth} def inference(image):
print('inference')
temp_image = Image.open(image).convert('L')
temp_image = temp_image.resize((FLAGS.image_size, FLAGS.image_size), Image.ANTIALIAS)
temp_image = np.asarray(temp_image) / 255.0
temp_image = temp_image.reshape([-1, 64, 64, 1])
with tf.Session() as sess:
logger.info('========start inference============')
# images = tf.placeholder(dtype=tf.float32, shape=[None, 64, 64, 1])
# Pass a shadow label 0. This label will not affect the computation graph.
graph = build_graph(top_k=3)
saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
if ckpt:
saver.restore(sess, ckpt)
predict_val, predict_index = sess.run([graph['predicted_val_top_k'], graph['predicted_index_top_k']],
feed_dict={graph['images']: temp_image, graph['training_flag']: False})
return predict_val, predict_index def main(_):
print(FLAGS.mode)
if FLAGS.mode == "train":
train()
elif FLAGS.mode == 'validation':
dct = validation()
result_file = 'result.dict'
logger.info('Write result into {0}'.format(result_file))
with open(result_file, 'wb') as f:
pickle.dump(dct, f)
logger.info('Write file ends')
elif FLAGS.mode == 'inference':
image_path = './data/00098/102544.png'
final_predict_val, final_predict_index = inference(image_path)
logger.info('the result info label {0} predict index {1} predict_val {2}'.format(190, final_predict_index,
final_predict_val)) if __name__ == "__main__":
tf.app.run()
densenet模型参考:https://github.com/taki0112/Densenet-Tensorflow
效果:
===============Eval a batch=======================
the step 34001.0 test accuracy: 0.765625
===============Eval a batch=======================
Compare Structure (CNN, ResNet, DenseNet)
densenet tensorflow 中文汉字手写识别的更多相关文章
- TensorFlow MNIST(手写识别 softmax)实例运行
TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/802 ...
- TensorFlow 入门之手写识别(MNIST) softmax算法
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- TensorFlow 入门之手写识别CNN 三
TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 ...
- TensorFlow 入门之手写识别(MNIST) softmax算法 二
TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- TensorFlow 入门之手写识别(MNIST) 数据处理 一
TensorFlow 入门之手写识别(MNIST) 数据处理 一 MNIST Fly softmax回归 准备数据 解压 与 重构 手写识别入门 MNIST手写数据集 图片以及标签的数据格式处理 准备 ...
- 基于tensorflow的MNIST手写识别
这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环.我也是! 这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟.在 ...
- 使用tensorflow实现mnist手写识别(单层神经网络实现)
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import n ...
- 基于tensorflow实现mnist手写识别 (多层神经网络)
标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...
- Tensorflow快餐教程(1) - 30行代码搞定手写识别
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lusing/article/details ...
随机推荐
- Spring2.5学习3.2_编码剖析@Resource注解的实现原理
首先看一下J2EE提供的@Resource注解:该注解默认安照名称进行装配,名称能够通过name属性进行指定, 假设没有指定name属性,当注解写在字段上时,默认取字段名进行依照名称查找,假设注解写在 ...
- .net安装windows服务和生产webservice
安装windows服务 1.打开cmd对话框. 2.输入 cd WINDOWS\Microsoft.NET\Framework64\v2.0.50727\ 3.回车 4.输入InstallUtil.e ...
- 阿里云官方教程 Linux 系统挂载数据盘
适用系统:Linux(Redhat , CentOS,Debian,Ubuntu) * Linux的云服务器数据盘未做分区和格式化,可以根据以下步骤进行分区以及格式化操作. 下面的操作将会把数据盘划 ...
- Iconfot阿里妈妈-css高级应用
矢量图标替换教程 首先进入:http://www.iconfont.cn/ 搜索你分类的关键字---然后加入购物车 加入购物车之后,下载到本地用浏览器打开demo.html 把a class=“原来样 ...
- c# mvc 路由规则学习片段
1.初步接触mvc 路由 routes.MapRoute( "CM", "CM/{controller}/{act ...
- 【解决】无法连接 MKS:套接字连接尝试次数太多正在放弃
https://blog.csdn.net/wjunsing/article/details/78496224 我的电脑 -> 右键 -> 管理 -> 服务和应用程序 -> 服 ...
- IntelliJ IDEA生成 Serializable 序列化 UID 的快捷键
首先创建一个类如Movie,让该类实现Serializable序列化接口. 然后我们需要依次按照以下的方法找到 Settings 之后我们需要以下几个操作,并找到 Serializable class ...
- rpm包查看和解压(转)
From:http://www.51testing.com/html/57/28557-205195.html 查看rpm包内容: rpm -qpl *.rpm 解压rpm包: rpm2cpio *. ...
- windows 10 python 2.7和python3.6共存解决方法和pip安装
一.首先去python官网将两个版本下载并安装: 然后进入windows的环境变量,检查下面4个变量: 1.C:\Python272.C:\Python27\Scripts3.D:\software\ ...
- JavaScript如何判断非空
JavaScript判断非空的语句一般为: var elvis; if (typeof elvis !== "undefined" && elvis !== nul ...