[POJ1155]TELE

试题描述

A TV-network plans to broadcast an important football match. Their network of transmitters and users can be represented as a tree. The root of the tree is a transmitter that emits the football match, the leaves of the tree are the potential users and other vertices in the tree are relays (transmitters). 
The price of transmission of a signal from one transmitter to another or to the user is given. A price of the entire broadcast is the sum of prices of all individual signal transmissions. 
Every user is ready to pay a certain amount of money to watch the match and the TV-network then decides whether or not to provide the user with the signal. 
Write a program that will find the maximal number of users able to watch the match so that the TV-network's doesn't lose money from broadcasting the match.

输入

The first line of the input file contains two integers N and M, 2 <= N <= 3000, 1 <= M <= N-1, the number of vertices in the tree and the number of potential users. 
The root of the tree is marked with the number 1, while other transmitters are numbered 2 to N-M and potential users are numbered N-M+1 to N. 
The following N-M lines contain data about the transmitters in the following form: 
K A1 C1 A2 C2 ... AK CK 
Means that a transmitter transmits the signal to K transmitters or users, every one of them described by the pair of numbers A and C, the transmitter or user's number and the cost of transmitting the signal to them. 
The last line contains the data about users, containing M integers representing respectively the price every one of them is willing to pay to watch the match.

输出

The first and the only line of the output file should contain the maximal number of users described in the above text.

输入示例


输出示例


数据规模及约定

见“输入”;另:过程中不会有超过 int 的值。

题解

树形 dp(树上背包)。

设 f(i, j) 表示子树 i 中选择了 j 个叶子的最大获利(若为负则 -f(i, j) 为最小亏损)。那么答案就是最大的 j,满足 f(i, j) 非负。

考虑子树 u,儿子上的信息肯定是最有子结构,所以先算出所有的 f(son, j),然后分别将一个个子树的信息加入 f(i, j)(f(u, i+j) = max{ f(u, i) + f(son, j) - dist(i, son) | j > 0 , f(u, i) + f(son, j) | j = 0 })。

可以证明总转移数是 O(n2) 级别的,详见这里

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 3010
#define oo 2147483647 int n, usr, m, head[maxn], nxt[maxn], to[maxn], dist[maxn], pay[maxn]; void AddEdge(int a, int b, int c) {
to[++m] = b; dist[m] = c; nxt[m] = head[a]; head[a] = m;
return ;
} int f[maxn][maxn], clea[maxn];
void dp(int u) {
if(u > n - usr) {
clea[u] = 1;
f[u][0] = 0; f[u][1] = pay[u];
return ;
}
f[u][0] = 0;
for(int e = head[u]; e; e = nxt[e]) {
dp(to[e]);
for(int i = clea[u]; i >= 0; i--) if(f[u][i] < oo)
for(int j = 0; j <= clea[to[e]]; j++) if(f[to[e]][j] < oo)
f[u][i+j] = max(f[u][i+j], f[u][i] + f[to[e]][j] - (j ? dist[e] : 0));
clea[u] += clea[to[e]];
}
return ;
} int main() {
n = read(); usr = read();
for(int i = 1; i <= n - usr; i++) {
int k = read();
while(k--) {
int u = read(), c = read();
AddEdge(i, u, c);
}
}
for(int i = n - usr + 1; i <= n; i++) pay[i] = read(); for(int i = 1; i <= n; i++)
for(int j = 0; j <= n; j++) f[i][j] = -oo;
dp(1); for(int j = clea[1]; j; j--) if(f[1][j] >= 0) return printf("%d\n", j), 0;
puts("0"); return 0;
}

[POJ1155]TELE的更多相关文章

  1. poj1155 TELE (树上分组背包)

    题目链接:https://vjudge.net/problem/POJ-1155 题意:给定一颗以1为根的边权树,有n个结点,其中m个叶子结点,每个叶子结点有一个价值.要求从m个叶子结点中选最多的结点 ...

  2. poj1155 TELE (树上的背包)

    题目链接:http://poj.org/problem?id=1155 题意:给定一棵树,1为根结点表示电视台,有m个叶子节点表示客户,有n-m-1个中间节点表示中转站,每条树边有权值.现在要在电视台 ...

  3. POJ1155 TELE(树形DP)

    题目是说给一棵树,叶子结点有负权,边有正权,问最多能选多少个叶子结点,使从叶子到根的权值和小于等于0. 考虑数据规模表示出状态:dp[u][k]表示在u结点为根的子树中选择k个叶子结点的最小权值 最后 ...

  4. POJ-1155 TELE (树形DP+分组背包)

    题目大意:给一棵带边权的有根树,每个叶子节点有权.边权表示代价,叶子节点的权值代表可以补偿多少代价.问从根节点最多可以到达多少个叶子,使得付出的总代价不大于0. 题目分析:定义状态dp(u,k)表示从 ...

  5. POJ1155 - TELE(树形DP)

    题目大意 电视台要直播一场比赛,电视网络刚好形成了一棵树,其中有M个为客户端,其他的为中转站,其中中转站与中转站以及中转站与客户端之间连接都需要一定费用,每个客户i愿意支付pay[i]元钱,问电视台在 ...

  6. [POJ1155]TELE(树形背包dp)

    看到这道题的第一眼我把题目看成了TLE 哦那不是重点 这道题是树形背包dp的经典例题 题目描述(大概的): 给你一棵树,每条边有一个cost,每个叶节点有一个earn 要求在earn的和大于等于cos ...

  7. POJ-1155 TELE 树形背包dp

    dp[u][i]代表以u为根的子树选i个叶子的最大收益 那么dp[u][i]=max(dp[u][i],dp[v][k]+dp[u][i-k]-len) (1=<k<=i) 细节看代码: ...

  8. 【树形dp】TELE

    [POJ1155]TELE Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5376   Accepted: 2973 Des ...

  9. [POJ 1155] TELE

    TELE Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3787   Accepted: 2007 Description ...

随机推荐

  1. appium---命令行启动appium

    在客户端的appium长时间运行的时候,出产生一些数据.日志有可能会对appium的内存有所增长,严重的会使appium产生崩溃,这个时候就推荐使用通过cmd进行运行appium, 安装前提需要安装N ...

  2. QT+event() + 事件过滤器

    其存在的意义: mywidget.h: #ifndef MYWIDGET_H #define MYWIDGET_H #include <QWidget> namespace Ui { cl ...

  3. c#List结合IEqualityComparer求交集

    List元素类: public class MultiPointSearchingRet { public int ID { get; set; } public string PlateNumber ...

  4. Bootstrap历练实例:语境色彩的面板

    带语境色彩的面板 使用语境状态类 panel-primary.panel-success.panel-info.panel-warning.panel-danger,来设置带语境色彩的面板,实例如下: ...

  5. Mysql常用运算符与函数汇总

    Mysql常用运算符与函数汇总 本文给大家汇总介绍了mysql中的常用的运算符以及常用函数的用法及示例,非常的全面,有需要的小伙伴可以参考下 我们先把数据表建好 use test;create tab ...

  6. iOS跳转到各种系统设置界面

    定位服务 定位服务有很多APP都有,如果用户关闭了定位,那么,我们在APP里面可以提示用户打开定位服务.点击到设置界面设置,直接跳到定位服务设置界面.代码如下: //定位服务设置界面 NSURL *u ...

  7. 【转】Qt Socket简单通信

    最近要用到Qt的Socket部分,网上关于这部分的资料都比较复杂,我在这总结一下,把Socket的主要部分提取出来,实现TCP和UDP的简单通信. 1.UDP通信 UDP没有特定的server端和cl ...

  8. 【AC自动机】bzoj3172: [Tjoi2013]单词

    fail图上后缀和需要注意一下 Description 某人读论文,一篇论文是由许多单词组成.但他发现一个单词会在论文中出现很多次,现在想知道每个单词分别在论文中出现多少次. Input 第一个一个整 ...

  9. Python分布式爬虫开发搜索引擎 Scrapy实战视频教程

    点击了解更多Python课程>>> Python分布式爬虫开发搜索引擎 Scrapy实战视频教程 课程目录 |--第01集 教程推介 98.23MB |--第02集 windows下 ...

  10. 配置wamp开发环境

    新手在PHP网站建设时,会使用使用PHP的集成开发环境,这样利于开发和理解!但是做为一个网站开发人员,会独立的配置开发环境这是必须的……因为集成的环境毕竟是固定的,不利于自己的开发.好,废话少说咱现在 ...